Alleviation of doxorubicin-induced nephrotoxicity by *Clerodendrum volubile* leaf extract in Wistar rats: A preliminary study

Olorunfemi Raphael Molehin

1Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, P.M.B., 5363, Ado-Ekiti, 360001, Nigeria

ARTICLE INFO

Article Type: Original Article

Article History:
Received: 23 May 2019
Accepted: 25 August 2019

Keywords:
Antioxidant
Doxorubicin
Nephrotoxicity
Clerodendrum volubile
Oxidative stress

ABSTRACT

Introduction: Doxorubicin (DOX), a well-known chemotherapeutic drug, has been reported to induce numerous toxic side effects including renal toxicity. This preliminary study was designed to investigate the ameliorative effects of methanolic leaf extract of *Clerodendrum volubile* (MECV) against DOX-induced nephrotoxicity in rats.

Methods: Thirty male rats were divided into five groups; (a) Control group: rats were given 0.9% NaCl as vehicle, (b) DOX group: a single dose of DOX (25 mg/kg; i.p.) was administered and the rats were sacrificed 4 days after DOX injection, (c-e) Methanolic extract of *C. volubile* (MECV)-treated DOX groups: rats were given MECV (at the doses of 125, 250 and 500 mg/kg/d), respectively for 12 consecutive days, 8 days before and 4 days after the DOX administration.

Results: DOX injection caused a significant increase \(P<0.05\) in serum creatinine and urea levels. The levels of renal antioxidant parameters: glutathione peroxidase, superoxide dismutase (SOD), catalase (CAT) and reduced glutathione were significantly \(P<0.05\) decreased in DOX-intoxicated rats with concomitant elevation of malondialdehyde level. Pretreatment with MECV restored antioxidant status, attenuated oxidative stress and improved kidney function markers. Pre-treatment with MECV protected renal tissues against DOX-induced nephrotoxicity.

Conclusion: The ameliorative effects of *C. volubile* leaves on these renal biochemical parameters may be via its antioxidant action and may serve as a novel combination agent with DOX to limit its renal damage.

Implication for health policy/practice/research/medical education:
This study demonstrated amelioration of doxorubicin-induced nephrotoxicity by *Clerodendrum volubile* recommend its potential benefits as a novel source of combination therapeutic agent with DOX to limit its renal damage.

Introduction
Chemotherapeutic drugs which are toxic to naturally dividing cells have found a useful role in treating tumors (1). Majority of these cytotoxic agents lack the ability to precisely differentiate between normal and cancerous cells, resulting in accumulation of these agents in healthy tissues which gives birth to deleterious clinical consequences (2). As an important antitumor, the anthracycline antibiotic, doxorubicin (DOX) is commonly used to treat a variety of malignant neoplasms including breast cancer, leukemia and solid tumors (3). However, due to its severe side effects, such as cardiotoxicity, nephrotoxicity and hepatotoxicity (4-7), the use of DOX as a chemotherapeutic agent in medicine has been limited. It is now understood that the multi-organ injury of DOX is partially due to its oxidative damage (7-9). Based on this, the use of antioxidant compounds (natural or synthetic) has been deployed as a therapeutic approach to control renal injury induced by DOX (10-12). Several studies have been conducted and documented to show the protective effects of naturally occurring substances with potent antioxidant properties against DOX- induced nephrotoxicity (13-15). *Clerodendrum volubile* P. Beauv (Family: Lamiacea) is widely found growing in many deciduous forests across...
West Africa (16). Its common names are ‘Obenetete’ among the Urhobo and Itsekiri tribes of the Niger-Delta of Nigeria, ‘Marugbo’ or ‘Ewe ata’ among the Yoruba tribes of Ondo State in South western areas of Nigeria (17-19). In the traditional system of medicine, the plant is used for the treatment of several diseases like diabetes, rheumatism, arthritis, edema and gout (16,20-22). Some of the reported pharmacological activities of *C. volubile* leaf includes: antioxidant (21,23), hepatoprotective (24,25), antihypertensive (18), neuroprotective (26), and cancer chemopreventive (27) activities. However, to the best of our knowledge, no study has been carried out on the nephro-protective activity of the plant against DOX-induced toxicity in rats. Therefore, this preliminary study was conducted to investigate the ameliorative effects of *C. volubile* against oxidative stress toxicity induced by administration of DOX.

Materials and Methods

Drugs, chemicals and equipment

DOX (50 mg/25 mL injectable form) was purchased from Matador Dafor Pharmaceuticals Ltd, Akure (Nigeria). Other chemicals like Trichloroacetic acid, 1-chloro-2,4-dinitrobenzene, thiobarbituric acid, 5,5’-dithiobis (2-nitrobenzoic acid), hydrogen peroxide (H₂O₂) and reduced glutathione were procured from Sigma (St Louis, MO, USA). Creatinine and urea kits were procured from Randox Laboratories Ltd (Crumlin, UK). Analytically graded chemicals were used throughout the study.

Plant collection and authentication

Fresh leaves of *C. volubile* were purchased from Oja Oba Market in Akure, Nigeria. The plant was identified and authenticated at the Department of Biology, Federal University of Technology (FUTA), Akure, Nigeria. The voucher number (FUTA/BIO/0121) was assigned.

Preparation of plant extract

Powdered leaves (500 g) of *C. volubile* was extracted with 1 L of methanol at room temperature for 24 hours and evaporated to yield the crude extract. The combined methanol extract was filtered and with the aid of rotary evaporator concentrated to obtain the crude extract from which a stock solution was prepared and administered to rats at a concentration of 200 mg/mL.

Acute toxicity study

The mean lethal dose (LD₅₀) of the methanolic extract of *C. volubile* leaf was investigated in rats (weighing 160–180 g) following the method of Chinedu et al (28).

Experimental animals and treatment

Apparently healthy adult male Wistar rats about 160-180 g in weight were purchased from the College of Medicine, Ekiti State University, Ado-Ekiti Nigeria. Animals were kept under a natural conditions (12 h light/12 h dark) throughout the experimental period. They were fed standard pellets and water, ad libitum. In this study, animal care was upheld gently in agreement with established guidelines as provided in the Guide for the Care and the Use of Laboratory Animals and in line with the University institutional Ethics Committee and Standards on animal care and experiments.

Experimental design

The rats were divided into five groups; (a) Control group: rats were given 0.9% NaCl as vehicle, (b) DOX group: A single dose of DOX (25 mg/kg; i. p.) was administered (29) and rats were sacrificed 4 days after DOX injection, (c-e) Methanolic extract of *C. volubile* (MECV)-treated DOX groups: rats were given MECV (at the dose of 125, 250 and 500 mg/kg body weight) orally, respectively viz: for 12 consecutive days; 8 days before, and 4 days after the DOX administration. At the end of treatment period, the animals were fasted overnight and then sacrificed. Blood samples were collected via cardiac puncture into dry tubes and thereafter centrifuged at 3000 × g for 10 minutes.

Tissue homogenate preparation

The kidneys were dissected, excised and rinsed in 1.15% KCl, then, blotted with filter paper and the weighed. They were then placed in an iced-cold phosphate buffer (pH 7.4) and then homogenized. The resultant kidney homogenate was subjected to centrifugation at 12000 × g for 15 minutes at 4°C to obtain the post-mitochondrial fractions which was kept at 4°C and used for further biochemical assays.

Determination of renal functions

Blood samples were collected via cardiac puncture, centrifuged at 3000 × g for 10 minutes. Serum creatinine and blood urea nitrogen were measured as a marker of renal function, using colorimetric assay kits according to the manufacturer’s instructions.

Biomarkers of oxidative damage

Assessment of lipid peroxidation

Lipid peroxidation was determined by estimating the thiobarbituric acid reactive substances formed (expressed as malondialdehyde [MDA] equivalents) following the method of Ohkawa et al (30). The level of MDA was deduced from the absorbance as described by Adám-Vizi and Seregi (31) and the unit given as nmol MDA/ mg protein. The reduced GSH estimation was carried out according to Jollow et al (32).

Antioxidant enzyme activities

The activity of superoxide dismutase (SOD) was evaluated using the method of Misra and Fridovich (33). The catalase (CAT) activities were investigated according to the procedure outlined by Sinha (34). The estimation of glutathione peroxidase (GPx) activity was carried out
using the method of Lawrence and Burk (35).

Histological assessment
Kidney tissues fixed in formalin were paraffin-embedded, cut at 5 µm thickness and stained with hematoxylin and eosin (H&E) stain. Histopathological examination of the stained tissue sections was carried out by a renal histologist, who was blinded to the sample groups (36).

Data analysis
Data from this study are depicted as mean ± standard deviation. The analysis was performed by using one-way analysis of variance (ANOVA). Turkey’s multiple comparison post hoc test was also carried out in all the groups using GraphPad prism 6.0 software package for Windows (37). The level of significance was placed at $P < 0.05$.

Results

Acute toxicity
The results of the acute toxicity studies revealed the nontoxic nature of *C. volubile* methanolic leaf extract. Rats administered with *C. volubile* extract appeared normal and did not show any significant changes in behavior or neurological responses up to 3000 mg/kg body weight of the extract. There was no mortality or toxicity reaction at any of the doses used until the end of the experiment (data not shown).

Effect of treatment on kidney functions
Serum urea and creatinine are indicators of kidney function. Our results showed that urea and creatinine levels were significantly increased in DOX group when compared to their corresponding control group. MECV + DOX showed decreased urea and creatinine levels in serum compared to DOX group (Figures 1 and 2).

Effect of treatment on biomarkers of oxidative damage
The antioxidant status of the kidney in normal and DOX-induced rats is shown in Table 1. The renal level of MDA increased significantly ($P < 0.05$) in the DOX-induced rats with concomitant decrease in GSH level. The pretreatment with MECV + DOX significantly reversed the effects of DOX.

Effect of treatment on antioxidant enzymes
Administration of DOX led to significant reduction of SOD, CAT, and GPx contents compared to control group respectively in the kidney of rats. However, the concomitant administration of MECV + DOX restored enzyme activities near to the baseline value recorded for the control group (Table 2).

Histological examination
Histopathological examination with H&E staining revealed normal renal glomeruli and cortical tubules structures in the control group. However, DOX-treated group showed glomeruli distortion, filtration space obliterated disappear, tubules focal atrophy necrosis and exfoliation, and vascular congestion. MECV+DOX combination group showed little or no visible lesions in the observed group (Figure 3).

Discussion
Doxorubicin is an antibiotic and a strong anticancer drug with wide spectrum of therapeutic actions. However, a prominent limiting factor to the use of DOX in anticancer therapy is its adverse effect of nephrotoxicity.
Although the exact mechanism of action behind DOX-induced nephrotoxicity remains not fully elucidated, the formation of free radical, oxidative damage, and lipid peroxidation of the membranes is believed to be a major factor contributing to DOX nephrotoxicity (6,7). C. volubile leaves extracts have been documented to perform an important role in attenuating oxidative stress, scavenging free radicals and boosting of antioxidant defense systems (12,20,21,24,38,39). DOX-induced nephrotoxicity was observed in our study following the significant increase in serum urea and creatinine levels (Figures 1 and 2) which was confirmed by toxic histopathological changes when compared with the corresponding control group. In the diagnosis of renal injury, urea and creatinine are the commonly used diagnostic markers of nephrotoxicity (40,41). The damaging effect to the renal tissues by DOX is characterized by an increase in the level of urea and creatinine in the serum. The results from this study (Figures 1 and 2) are similar to previous studies (29,43).

Literature reports on medicinal plants and their derived bioactive components have pointed to significant improvements on DOX-induced nephrotoxicity through the administration of methanolic extract of Clerodendrum volubile. (Table 1). The extract was found to significantly reduce the levels of oxidant markers such as GSH (1.26 ± 0.2 vs. 1.30 ± 0.4) and MDA (16.88 ± 1.7 vs. 11.88 ± 0.14) in DOX-treated rats. Similarly, antioxidant parameters such as SOD, CAT, and GPx were also found to be significantly increased in rats treated with the extract (Table 2).

Table 1. Effect of MECV on DOX-induced changes in GSH and MDA

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>GSH (μg/g tissue)</th>
<th>MDA (nmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4.54 ± 1.5</td>
<td>11.88 ± 0.14</td>
</tr>
<tr>
<td>DOX only (25mg/kg)</td>
<td>1.30 ± 0.4 (71.36)*</td>
<td>16.88 ± 1.7 (29.62)*</td>
</tr>
<tr>
<td>MECV (125 mg/kg) + DOX (25 mg/kg)</td>
<td>2.16 ± 0.2 (39.81)#</td>
<td>15.18 ± 0.9 (10.07)#</td>
</tr>
<tr>
<td>MECV (250 mg/kg) + DOX (25 mg/kg)</td>
<td>2.40 ± 0.5 (45.83)#</td>
<td>13.34 ± 0.1 (20.97)#</td>
</tr>
<tr>
<td>MECV (500 mg/kg) + DOX (25 mg/kg)</td>
<td>2.78 ± 1.5 (53.24)#</td>
<td>12.55 ± 0.4 (25.65)#</td>
</tr>
</tbody>
</table>

GSH, reduced glutathione; MDA, malondialdehyde; DOX, doxorubicin; MECV, methanolic extract of Clerodendrum volubile. Values are expressed as mean ± standard deviation of mean (SD) for five rats in each group.

* P < 0.05 compared to control group; # P < 0.05 compared DOX-treated rats. Values in parenthesis represent % change; % change relative to control; % change relative to DOX.

Table 2. Effect of MECV on DOX-induced alterations in antioxidant parameters

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>SOD (U/mg protein)</th>
<th>CAT (H2O2 µmole consumed/min)</th>
<th>GPx (mol/mg protein/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12.69 ± 2.5</td>
<td>15.88 ± 2.6</td>
<td>136.93 ± 8.6</td>
</tr>
<tr>
<td>DOX only (25 mg/kg)</td>
<td>8.33 ± 1.5 (65.64)*</td>
<td>8.72 ± 1.2 (45.08)*</td>
<td>88.88 ± 4.6 (35.09)*</td>
</tr>
<tr>
<td>MECV (125 mg/kg) + DOX (25 mg/kg)</td>
<td>9.95 ± 1.3 (16.23)#</td>
<td>10.73 ± 2.1 (18.73)#</td>
<td>110.36 ± 7.6 (19.46)#</td>
</tr>
<tr>
<td>MECV (250 mg/kg) + DOX (25 mg/kg)</td>
<td>10.73 ± 0.5 (22.37)#</td>
<td>12.71 ± 1.5 (31.39)#</td>
<td>116.67 ± 6.5 (23.82)#</td>
</tr>
<tr>
<td>MECV (500 mg/kg) + DOX (25 mg/kg)</td>
<td>11.24 ± 1.0 (25.89)#</td>
<td>13.86 ± 3.3 (37.09)#</td>
<td>122.12 ± 7.4 (27.22)#</td>
</tr>
</tbody>
</table>

SOD, superoxide dismutase; CAT, catalase; GSH, reduced glutathione; MDA, malondialdehyde; DOX, doxorubicin; MECV, methanolic extract of Clerodendrum volubile. Values are expressed as mean ± standard deviation of mean (SD) for five rats in each group.

* P < 0.05 compared to control group; # P < 0.05 compared DOX-treated rats. Values in parenthesis represent % change; % change relative to control; % change relative to DOX.

Figure 3. Histopathological changes in the rat’s kidney caused by doxorubicin (DOX) and protective effect of methanolic extract of C. volubile (MECV) in different groups. Kidney section (×400) of the rat treated with: (A) normal saline without visible lesions; (B) DOX (25 mg/kg; i. p.) showing a severe necrosis and distortion of cyto-architecture of renal tissue; (C) DOX + MECV (125 mg/kg body) showing no visible lesions; (D) DOX + MECV (250 mg/kg body), showing progressive improvement in the structure of the kidney; (E) DOX + MECV (500 mg/kg body) with no histological alterations or visible lesions.
their antioxidant and free radical scavenging activities (29,42,44). In the current study, the role of another medicinal plant (C. volubile) with reported antioxidant and free radical scavenging activities on DOX-induced nephrotoxicity was investigated. From our results, MECV could significantly reduce serum urea and creatinine levels compared to DOX-treated group (Figures 1 and 2). This might be due to the free radical scavenging abilities and antioxidant effects of MECV which suppressed DOX-mediated oxidative stress and tissue damage. Results from the histopathology (Figure 3) showed that DOX-treated group presented with marked damage of renal tubules showing visible lesions. This is in agreement with Kumral et al (29) and Mohebbati et al (44), who showed similar histopathological findings.

DOX has been reported to induce oxidative stress in the kidney with the evidence of an increase in lipid peroxidation and alteration in the antioxidant status indices (6). Pre-treatment with MECV obviously reduced the significant elevation in MDA content caused by DOX and is in agreement with Elewa et al (45) and Omobowale et al (46) who demonstrated that extracts from the plant Spirulina platensis decreased MDA level in the kidney of rats induced by DOX. In addition, previous report on C. volubile plant (21,20,23,38,39,47) have shown its potential to boost antioxidant activities and attenuate oxidative stress.

Consequently, it is not surprising that MECV is able to reduce MDA levels possibly by the presence of bioactive compounds which has been well reported to have antioxidant properties that can scavenge free radicals generation in vivo. These phenolic compounds are found ubiquitously in plants and they have been documented to confer many health benefits which the plants exhibit such as antioxidant, antidiabetic, anticarcinogenic, and anti-carcinogenic properties (22,48-50). Some reported bioactive compounds in C. volubile leaves are phenolic acids (rosmarinic acid, garlic acid, chlorogenic acid, caffeic acid) and flavonoids (quercetin, rutin, isoquercitrin) (18,19,23). Chlorogenic acid, rosmarinic and rutin are the predominant compounds present in C. volubile leaf. Previous studies on chlorogenic acid and rosmarinic acid have demonstrated the renoprotective abilities in xenobiotic-induced kidney damage in mice (51). The protective ability of this plant against DOX-induced kidney damage observed in this study might be as results of the presence of these bioactive components present in the leaves of C. volubile. Previous studies have also shown that treatment with DOX significantly reduced renal GSH and this could bring about a short fall in the redox status pool of the cell (52). The interaction of the protein thiols and sulphydryl groups of GSH with the resultant metabolites from DOX has been associated to this occurrence (53). The significant elevation of lipid peroxidation as shown in this study might also be responsible for the reduced GSH level. However, administration of MECV prior to DOX treatment significantly raised this reduced GSH level at the doses used in this study.

Furthermore, the activities of the renal SOD, catalase and GPx were significantly reduced in the DOX-intoxicated rats, respectively (Table 2). The decrease in the SOD activity could be due to the increased lipid peroxidation (MDA content) observed earlier (as shown in table 1), or the inactivation of the antioxidant enzymes which would ultimately result in accumulation of superoxide radicals, further initiating the lipid peroxidation process (54). The results obtained from this study corroborates report by Erukainure et al (55) who showed the antioxidant activities of an isolated iridoid glycoside from the leaves of C. volubile in brain and hepatic tissue. Similar antioxidant properties of C. volubile leaves have also been demonstrated in vivo by Molehin et al (24) and in vitro by Adelegha and Oboh (18) and Ogunwa et al (21). From histology point of view, pretreatment with MECV offered remarkable protection against kidney damage as shown in the intact renal cyto-architecture with no visible lesions.

Conclusion

In conclusion, data from this preliminary study may support the hypothesis that oxidative stress plays an important role in the mechanism of DOX-induced nephrotoxicity and that MECV has therapeutic potential in ameliorating renal injury induced by DOX possibly via antioxidant mechanism.

Author contributions

The study design, experimental and data analyses, and preparation of the manuscript was done by ORM. The author read and approved the final manuscript.

Conflict of interest

The author declares that he has no conflict of interest.

Ethical considerations

All the animals received care according to the criteria outlined in the Guide for the Care and the Use of Laboratory Animals prepared by EU Directive 2010/63/EU for animal experiments. The ethic regulations were followed in accordance with national and institutional guidelines for the protection of animals’ welfare during experiments. The protocol for this study was approved by The Research Ethics Committee, Ebelola Bioenergetic Solutions, Osogbo Osun State Nigeria (EBS/LSR/A/7/2019/001).

Funding/Support

This research was financially supported by the author.

References

Clerodendrum volubile leaf extracts on key enzymes
Clerodendrum leaves inhibit cholinergic and
Clerodendrum) leaves on blood glucose levels,
16. Molehin OR, Oloyede Ol. In vitro antioxidant and
sub-acute toxicity studies of aqueous extract of white
17. Erukaikure OR, Ajayi EG. Effect of chlorogenic acid
and rutin and / or hesperidin against doxorubicin-induced
18. Ademosun AO, Boligon AA. Phenolic extracts from
Clerodendrum volubile and hepatic damage by white butterfly
(Molehin OR, Oloyede OI, Idowu KA, Adeyanju AA,
sub-acute toxicity studies of aqueous extract of white
butterfly (Molehin OR, Oloyede OI. In vitro antioxidant and
biotransformation of the leaf extracts of
19. Hozayan WG, Abou Seif HS, Amin S. Protective effects of
ruixin and / or hesperidin against doxorubicin-induced
20. Su Z, Ye J, Qin Z, Ding X. Protective effects of madecassoside
against Doxorubicin induced nephrotoxicity in vivo and in
21. Molehin OR, Oloyede Ol, Adegaeha SA. Streptozotocin-
induced diabetes in rats: effects of White Butterfly
(Clerodendrum volubile) leaves on blood glucose levels,
lipid profile and antioxidant status. Toxicol Mech Methods.
22. Ajith TA, Aswathy MS, Hema U. Protective effect of Zingiber
officinalis rootos and its effect on testicular tissues, causes
K, Asada H, et al. C-kit expression in spermatogonia
damaged by doxorubicin exposure in mice. J Obstet
0756.2012.02066.x.
24. Molehin OR, Oloyede Ol, Idowu KA, Adeyanju AA,
Erukainure OL, Mesaik AM, Muhammad A, Chukwuma
Cl, Manhas N, Singh P, et al. Flowers of Clerodendrum
volubile exacerbate immunomodulation by suppressing
phagocytic oxidative burst and modulation of COX-2
activity. Biomed Pharmacother. 2016;83:1478-84. doi:
25. Ogunwua TH, Adeyelu TT, Fasimoye OY, Oyewale MB,
Ademoye TA, Ilesanmi OC, et al. Phytochemical evaluation
and in vitro antioxidant status of Clerodendrum volubile
26. Molehin OR, Oloyede Ol, Ayajy EG. GC-MS analysis of
bioactive compounds in three extracts of Clerodendrum
27. Molehin OR, Oloyede Ol, Boligon AA. Comparative study on
the phenolic content, antioxidant properties and HPLC
fingerprinting of the leaf extracts of Clerodendrum volubile
JAPS.2017.70322.
28. Erukainure OL, Oke OV, Ajiboye AJ, Okafor OY. Nutritional
qualities and phytochemical constituents of Clerodendrum
volubile, a tropical non-conventional vegetable. Int Food
29. Adefegha SA, Oboh G. Antioxidant and inhibitory properties of
Clerodendrum volubile leaf extracts on key enzymes
relevant to non-insulin dependent diabetes mellitus and
10.1016/j.jtusci.2015.10.008.
30. Molehin OR, Oloyede Ol. On the phenolic content, antioxidant
properties and HPLC fingerprinting of the leaf extracts of
31. Ogunwua TH, Adeyelu TT, Fasimoye OY, Oyewale MB,
Ademoye TA, Ilesanmi OC, et al. Phytochemical evaluation
and in vitro antioxidant status of Clerodendrum volubile
32. Molehin OR, Oloyede Ol, Ayajy EG. GC-MS analysis of
bioactive compounds in three extracts of Clerodendrum
33. Molehin OR, Oloyede Ol, Boligon AA. Comparative study on
the phenolic content, antioxidant properties and HPLC
fingerprinting of the leaf extracts of Clerodendrum volubile
JAPS.2017.70322.
34. Molehin OR, Oloyede Ol, Idowu KA, Adeyanju AA,
Erukainure OL, Mesaik AM, Muhammad A, Chukwuma
Cl, Manhas N, Singh P, et al. Flowers of Clerodendrum
volubile exacerbate immunomodulation by suppressing
phagocytic oxidative burst and modulation of COX-2
activity. Biomed Pharmacother. 2016;83:1478-84. doi:
35. Ogunwua TH, Adeyelu TT, Fasimoye OY, Oyewale MB,
Ademoye TA, Ilesanmi OC, et al. Phytochemical evaluation
and in vitro antioxidant status of Clerodendrum volubile
36. Molehin OR, Oloyede Ol, Ayajy EG. GC-MS analysis of
bioactive compounds in three extracts of Clerodendrum
37. Molehin OR, Oloyede Ol, Boligon AA. Comparative study on
the phenolic content, antioxidant properties and HPLC
fingerprinting of the leaf extracts of Clerodendrum volubile
JAPS.2017.70322.
Modulatory effect of Clerodendrum volubile leaf against doxorubicin-induced nephrotoxicity in rats

http://www.herbmedpharmacol.com Journal of Herbmed Pharmacology, Volume 9, Number 2, April 2020 7