Wound healing effects of *Artemisia sieberi* extract on the second degree burn in mice skin

Jahangir Kaboutari Katadjii*, Mahmoud Rafieian-Kopaei2, Hossein Nourani3, Behnaz Karimi1

1Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
2Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
3Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mshhad, Iran

A R T I C L E I N F O

Article Type: Original Article

Article History:
Received: 14 November 2015
Accepted: 12 February 2016

Keywords:
Artemisia sieberi
Second degree burn
Healing

A B S T R A C T

Introduction: Previous studies have shown anti-ulcerogenic effects of *Artemisia sieberi* (*A. sieberi*) on gastric lesions and experimental skin wound, so this study was conducted to evaluate healing effects of *A. sieberi* on the experimental second degree burn in mice skin.

Methods: Ninety adult male mice in 3 groups were used. Second degree burn was made in the dorsum and then silver sulfadiazine (SSD) 1% ointment and *A. sieberi* extract were applied in the positive control and treatment groups respectively, while in the negative control no medication was done. Digital photographs were taken daily for determination of healing percentage. For histopathological assessment, 5 mice of each group on the days 1, 3, 7, 14 & 21 post burn, were chosen and after euthanasia, a full thickness skin flap of the burn was taken and after tissue processing, specimens were stained with Hematoxylin-Eosin (H&E) and examined for granulation tissue, inflammation, re-epithelialization and collagen sediment, also hydroxyproline content of burn was measured. Data were presented as mean ± SE and analyzed by using Kruskal-Wallis and Dunn post hoc tests (*P* ≤ 0.05).

Results: *A. sieberi* enhanced wound healing via significantly decreased inflammation, increased granulation tissue, hydroxyproline content and healing percentage in comparison to negative control in such a manner which was comparable to standard SSD.

Conclusion: It seems that *A. sieberi* can promote burn healing due to anti-inflammatory, antioxidant, anti-microbial and mitogenic properties of the plant.

Implication for health policy/practice/research/medical education
A. sieberi increased granulation tissue, hydroxyproline content and healing percentage parallel to decreased inflammation which leading to promote burn healing due to anti-inflammatory, antioxidant, anti-microbial and mitogenic properties

Introduction

Burn is a tissue injury due to extreme heat, electrical, radiation, corrosive chemical and friction sources. It is one of the major reasons of death and inability and accounts the fourth cause of injuries worldwide (1). Burns are classified most commonly based on the depth of injury into first degree, second degree, third degree and forth degree. In the second degree burn, injury extends to the superficial/deep dermis. Many of the burn injuries are due to disturbance in the normal protective and physiological functions of skin (2). Cave portraits indicated that burn and its management came back to more than 3500 years ago (3). Various folk remedies particularly herbal medications had been indicated in different civilizations, for example Avicenna recommitted medicinal plant for sore dressing (4). Today there are topical treatments for burn wounds e.g. silver sulfadiazine (SSD), silver impregnated dressings, silver nitrate, mafenide acetate, neomycin, polymyxin B, mupirocin. Although SSD 1% ointment is considered as the gold standard for topical burn treatment, nephrotoxicity, leukopenia, risk of antibiotic resistant and delayed wound healing are considered as its adverse effect (5). So, finding new, efficient therapeutic agents with more safety has always been a great concern (6). Medicinal plants lived long before human being and nowadays, they are prominent source of indigenous products for human health, because of suitable efficacy, less toxicity and side effects than chemical drugs (4,7,8). *Artemisia* species are medicinal plants with a long history of different indications...
in the traditional and modern medicine as anti-malaria, anti-pyretic, analgesic, anti-oxidant, anti-inflammatory, anti-hepatitis, anti-ulcerogenic, anti-helminthic, anti-amoebic and anti-hemorrhagic (9-13). Anti-ulcerogenic action of some sesquiterpene lactones of *A. annua* and ethanolic extract of its aerial parts had been shown (14,15). Histopathological and biochemical analysis of *A. Annua* extract showed that it can hasten healing of experimental dermal injuries (16). Later accelerating effects of ethanolic extract of *A. aucheri* on wound healing and reducing the healing period was reported (17). Also the ability of *A. sieberi* extract to increase thickness of skin layers and collagen fibers have been reported (8). So due to anti-microbial, anti-inflammatory, anti-oxidant and anti-ulcerogenic activity of *Artemisia* species and its suitable effects on the histopathological, histomorphometric and biochemical parameters of the skin and wound healing, this study was conducted to evaluate the effects of *A. sieberi* extract on the healing of second degree burn.

Materials and methods

Plant extraction

Aerial parts of *A. sieberi* were collected from Yazd province in the center of Iran, dried at room temperature, grounded and sieved and then Artemisinin extraction was done by using petroleum ether (8,11).

Animals

Ninety adult male mice (20-25 g) in three experiments were used. Animals were housed under standard laboratory conditions in accordance with the European community guidelines for laboratory animals (12 hours light/dark cycle, ambient temperature of 22±1°C; 60% humidity) and under supervision of the Ethical Committee of the University, while chow pellet and water were freely available. After 1 week of acclimatization, they were divided accidentally into three groups (n = 30). Mice were anesthetized with an intra-peritoneal (i.p) injection of 40 mg/kg sodium thiopental (UVB Pharma, Czech Republic). The skin of dorsum was shaved and thoroughly depilated and thereinafter washed with povidone iodine. Burn was made by contact of a round 1 cm diameter metal plate (105°C, 5 seconds, without pressure) and then for prevention of shock, 1 ml of normal saline was injected i.p and each animal was kept in a separate cage. Group one was treated with SSD 1% ointment (King Pharmaceuticals, USA), group two was treated with *A. sieberi* extract but group three was selected as negative control and received no medication. Treatments were done every 12 hours for 21 days.

Histopathological evaluation

The burns were monitored for sign of infection and digital photographs were taken daily and after analysis by using ImageJ software, they were used for measurement of wound area and calculating healing percentage (18): [(area of the first day- area of the second day)/ (area of the first day)]×100.

For histopathological study, 5 mice of each group on the days 1, 3, 7, 14 and 21 post-treatments were chosen randomly and after euthanasia, a full thickness skin flap of the burn was taken and fixed. Tissue processing was done (Autotechnicon tissue processor Citadel 1000, Thermo Shandon, UK), specimens were stained with H&E and examined for tissue granulation, inflammation, re-epithelialization and collagen sediment (19,20). Hydroxyproline content of burn as the index of tissue collagen was measured (21).

Statistical analysis

Data were presented as mean±SD and analyzed by using SPSS version 16.0 (Chicago, IL, USA). Kruskal-Wallis and Dunn post hoc tests were used for data analysis (P≤0.05).

Results

Healing percentage

Healing percentage of *A. sieberi* and SSD was significantly higher than control on days 7&14 (P≤0.05), while on day 7, the difference between *A. sieberi* and SSD was not significant (P>0.05; Figure 1).

Inflammation

From day 1 to 21 inflammation score was decreasing, but only on days 3 & 7 in the *A. sieberi* and SSD groups it was significantly lower than control (P≤0.05), while on the rest of days such a significant difference was not seen (P>0.05; Figure 2).

Granulation tissue

On day 3 granulation tissue of *A. sieberi* and SSD was significantly higher than control (P≤0.05), while there was no significant difference neither between *A. sieberi* and SSD on day 3, and nor between *A. sieberi* and SSD with control on other days (P>0.05; Figure 3).

Hydroxyproline

Hydroxyproline content of burn as the index of collagen synthesis was measured on day 14. It was significantly higher than control on other days (P>0.05; Dunn test).
Healing effects of *Artemisia sieberi* in burn

Wound healing in the least possible time and decreasing functional and emotional consequences of the burn injuries is the ultimate purpose of burn treatment (5). Form past times abundant plants and derivative products have been used in traditional and modern medicine for wound healing (4,8,22). Burn healing is a complex, time consuming process, which inflammation is the first stage of this process, but overtime it may offend wound area and surrounding tissue and thus hinder healing, so, modulation of inflammation can promote wound healing (6,23). In this study *Artemisia* extract significantly decreased inflammation score on the days 3 & 7. Previously it was shown that almost *Artemisia* genus possess immunosuppressive and anti-inflammatory potential (8,12,14,16). Sesquiterpene lactones including artemisinin, dehydroleucodine, and flavonoids and micronutrients e.g. copper, zinc & manganese which are potent anti-oxidant and anti-free radicals (8,12,16). Additionally plant extract contains phenolic components such as tannin, xanthines, cumarine and flavonoids and micronutrients e.g. apigenin, crisilineol and 6-methoxytricin are active ingredients of *Artemisia* which seems to exert anti-inflammatory and immunosuppressive activity via interaction with nuclear factor κB (NF-κB) and inhibiting liberation of inflammatory mediators (8,12,14,16,24). Scoparone is another constituent of the plant that inhibits iNOS and COX-2 enzymes which decline release of inflammatory mediators (8,12,16). Scoparone is another constituent of the plant that inhibits iNOS and COX-2 enzymes which decline release of inflammatory mediators (8,12,16).

Discussion

Histopathological results

Histopathological evaluation of the burn is illustrated in Figure 5. On the day 3, in the *A. sieberi* group, tissue necrosis was seen on the surface of the burn, inflammation was evident and many inflammatory cells especially neutrophils were presented, and despite that regeneration of the epithelium has been stared but it was not complete and number of blood vessels was few (Figure 5A). On the day 7, healing proceed in the *A. sieberi* group, so that epithelial tissue has been regenerated but surface keratinization has not been done and also collagen fibers have been formed (Figure 5B). In the day 21 in the both SSD and *A. sieberi* groups healing has been completed, epithelial and connective tissues were completely regenerated and their structures were seen normally, so that in the SSD group hair follicles were clearly visible. Collagen fibers in the dense bundles and horizontal orientation were seen, numbers of fibrocytes increased and were more than fibroblasts and new vascularization has been decreased (Figure 5C and 5D).

![Figure 2](image1.png)

Figure 2. Pathological score of the inflammation of burn in the silver sulfadiazine (SSD), *Artemisia sieberi* and control groups on sampling days. Different letters indicate significant difference ($P \geq 0.05$; Dunn test).

![Figure 3](image2.png)

Figure 3. Pathologic score of granulation tissue of burn in the silver sulfadiazine (SSD), *Artemisia sieberi* and control groups on sampling days. Different letters indicate significant difference ($P > 0.05$; Dunn test).

![Figure 4](image3.png)

Figure 4. Comparison of hydroxyproline content of burn in the silver sulfadiazine (SSD), *Artemisia sieberi* and control groups on day 14. Different letters indicate significant difference ($P > 0.05$; Dunn test).
of death in severe burns, therefore decreasing the hazard of burn infection can improve healing (4,6,18). Prior studies have shown that Artemisia possesses antibacterial property against bacteria including Staphylococcus aureus, Streptococcus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and dermatophytic infections, which are the most important infectious agents of the burn. These anti-bacterial effects is attributed to the constituents such as verbenol, camphor, cineole, linalool, borneol, cymene, sabinene, α & β thujone and 1,8-cineole in the Artemisia plant that may be another mechanism responsible for promotion of wound healing (8,13,25-29). This study indicated that Artemisia during days 7&14 significantly improved healing, so that in the day 14 it was significantly better than SSD. Some sesquiterpene lactones of Artemisia exhibit antiulcerogenic effects by augmentation of gastric glycoprotein, mucus and prostaglandin synthesis against gastric ulcers (14,15). Later, increasing number of fibroblast, capillary buds, epithelial gap and improving the tensile stability of the wound following application of A. sieberi extract was reported (16). Also A. sieberi extract significantly increased epidermis, dermis and hypodermis thickness and percentage of collagen fiber in normal skin (8). Intensification of collagen formation and epithelialization can promote healing. During remodeling stage of wound healing, collagen fibers play a vital role to supply strength of the extracellular matrix and support wound and eventually intensifying tensile of the skin (16,18,23). The effects of Artemisia on the increment of the hydroxyproline content of burn can be due to the mitogenic characteristic of the plant leading to more collagen synthesis and durability of the healing tissue, improvement of re-epithelialization and establishment of granulation tissue which finally leads to enhancement of healing (8,16).

Conclusion
Artemisia extract promotes burn healing which can be due to antioxidant, anti-inflammatory, anti-microbial and mitogenic properties of the plant leading to modulation of inflammation, prevention of oxidative stress and free radical collecting, prevention of wound infection, amplification of collagen synthesis, re-epithelialization and granulation tissue.

Authors’ contributions
JK: research design & manuscript preparation; JK and BK: performing animal experiments; BK, HN and MR: histopathological examinations & statistical analysis

Conflict of interests
The authors of the manuscript declare that they have no conflict of interest.

Ethical considerations
The authors have been entirely regarded ethical issues such as plagiarisms, data assembly, fraud, double publication or submission. All animal experiments had been approved by the ethical committee of the University and carried out according to the International Guide for the Care and Use of Laboratory Animals.

Funding/Support
The authors appreciate Deputy of Research, Shahrekord University, Shahrekord, Iran unselfishly for financial support of the project.

References
7. Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka...
Healing effects of Artemisia sieberi in burn

Journal of HerbMed Pharmacology, Volume 5, Number 2, April 2016

