Effect of green tea on inflammation and oxidative stress in cisplatin-induced experimental liver function

Nilofar Amidi1, Shirin Moradkhani2, Mahsa Sedaghat2, Nejat Khiripour1,3, Amir Larki-Harchegani4, Nahid Zadkhosh4, Mahmoud Mirhoseini5, Akram Ranjbar4

1Student Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
2Department of Pharmacognosy and pharmaceutical biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
3Department of Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
4Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
5Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran

Introduction
Cisplatin is one of the most potent chemotherapeutic antitumor drugs. Also, oxidative stress has been established to be involved in cisplatin-induced toxicity. Therefore, the present study was undertaken to examine the antioxidant and anti-inflammation potential of green tea hydroalcoholic extract (GTE) against the liver function of cisplatin in male rats.

Methods: Adult male Wistar rats (180–250 g) were divided into 4 groups (n = 5) treated as follows: (1) control group (saline solution, 1 ml kg−1 body weight, i.p.), cisplatin group (7 mg kg−1 body weight, i.p.). Animals of Groups III received only green tea extract (30 mg/kg/day, by gavage). Group IV was given green tea extract+ cisplatin once daily for 24 hours. Liver function was evidenced in the cisplatin group by the increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The mechanism of cisplatin induced liver function was considered as being decreased the total antioxidant power (TAP). Systemic inflammation was assessed by tumor necrosis factor-alpha (TNF-α) levels.

Results: A decrease in TAP level in cisplatin group was observed compared with control group. GTE administration decreased TNF-α and increased TAP compared to cisplatin group, but showed no significant differences between groups.

Conclusion: The results suggested that green tea could ameliorate cisplatin liver function in rats through reduction of oxidative toxic stress and inflammation.

Implication for health policy/practice/research/medical education:
Green tea polyphenols are potent antioxidants with anti-inflammatory property, and may have a protective role in hepatoprotective of cisplatin toxicity through reduction of oxidative stress. Hence it may be beneficial in patients using cisplatin.

stimulating, anti-carcinogenic, anti-allergic, anti-inflammatory, anti-bacterial, cardio-protective and antiviral activities (8). Furthermore, the researchers suggested that green tea may be useful in ameliorating the cytotoxic effects of chemotherapeutic agents (9). The green tea polyphenols have been shown to possess potent antioxidant activity that is several folds higher than that of vitamins C and E (10). Therefore, in the present study the effect of total green tea extract (GTE) was investigated on inflammation and oxidative stress in cisplatin-induced experimental liver function.

Materials and methods

Plant materials

The leaves of *Camellia sinensis* L. (Theaceae) was purchased from the market in September 2013. A voucher specimen was deposited at the Herbarium of the Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran (No: 230).

Plant extraction

Dried and finely powdered aerial parts (1000 g) were extracted with methanol 80% (3×5 L) at room temperature, three times each time 3 days. After removal of the solvent in vacuum at 50°C, the residue (300 g, 30%, w/w) was stored at 4°C in sealed vials until usage.

Chemicals and drugs

Dithiononitrobenzoic acid (DTNB), Tris base, 2,4,6-tripyridyl-s-triazine (TPTZ), from Merck Chemical Co. (Tehran), TNF-α kit from Abcam and green tea were prepared and used in this study.

Animals and experimental design

Male albino rats of Wistar strain weighing approximately 250–300 g, obtained from the Pasteur Institute of Iran, were used throughout this study. They were maintained at an ambient temperature of 25 ± 2°C and 12/12 hours of light–dark cycle. The experimental animals were divided into four groups, each group contained 5 animals: (1) control group (saline solution, 1 ml 100 g–1 body weight, by gavage), cisplatin group (7 mg kg−1 body weight, i.p.). Animals of Group III received only green tea (30 mg/kg/day, by gavage). Group IV was given green tea+ cisplatin once daily for 24 hours. The animals were killed 24 hours after the treatment (11).

Liver function evaluation

Alanin aminotransferase (ALT) and Aspartate aminotransferase (AST) were assayed by Pars Azamon kit.

TNF-α assay

Serum TNF-α was measured by Enzyme-linked immunoadsorbent assay (ELISA) using an enzyme-linked immunoassay kit (rat TNF-α ELISA kit, ab46070, Abcam, USA) according to the manufacturer's protocol. The TNF-α content was expressed as pg/mL.

Estimation of oxidative stress parameters

Assay of total antioxidant power

It was measured by ferric reducing ability of plasma (FRAP) method. This method is based on the ability of plasma in reducing Fe³⁺ to Fe²⁺ in the presence of TPTZ. The reaction of Fe²⁺ and TPTZ gives a complex with blue color and maximum absorbance in 593 nm (12).

Assay of total thiol groups

To evaluate the plasma total thiol molecules, DTNB was used as a reagent. DTNB reacts with thiol molecules and creates a yellow complex which has good absorbance at 412 nm in spectrophotometer (13).

Statistical analysis

Results were expressed as the mean ± standard error (SE) for all animals in each group. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by post hoc Tukey test. Results were considered significantly different if *P*<0.05.

Results

Effect of green tea extract on the oxidative stress parameters and blood TNF-α level of rats

Table 1 shows the mean ± SE of variables related to either oxidative stress in animals tested. A significant increase (*P* = 0.04) in total antioxidant power (TAP) was observed in green tea vs cisplatin group. The values for green tea and cisplatin groups were 5.04 ± 0.11 and 2.9 ± 0.26 μmol/mL, respectively. TNF-α of green tea group decreased significantly compared with cisplatin group (*P* = 0.045) (16.67 ± 2.5 vs 23.03 ± 2.05 pg/mL). Also, green tea reduced ALT compared to cisplatin group (*P* = 0.032) (58.22 ± 4.77 vs 97.76 ± 4.47 U/mL). AST increased in cisplatin group compared to green tea group (*P* = 0.035) (124 ± 15 vs 42.08 ± 7.9 U/ml). No significant difference was observed in TTT between groups.

Discussion

The present study established that administration of GTE improves the level of parameters of oxidative stress and inflammatory such as TAP and TNF-α. Also, GTE improved liver function throughout reduction of ALT and AST compared to cisplatin group. In this study, administration of GTE decreased the plasma oxidative status. A significant decline in antioxidant enzymes activities and increase in free radicals in experimental models as well as in subjects were typical during the regimens of commonly used chemotherapy, which is particularly related to cisplatin treatment. In this regard, a significant increase in kidney lipid peroxidation and decrease in the activities of antioxidant enzymes have previously been reported (14). The investigators have also reported an increase in lipid peroxidation and decrease in the activities of antioxidant enzymes upon similar cisplatin treatment of rats (15). Similarly, previous studies, reported significant increase in hepatic lipid peroxidation and decrease in antioxidant enzymes in rats treated with cisplatin (16). It has been suggested that oxidative stress is an important mechanism
of cisplatin-induced toxicity possibly due to depletion of glutathione and thiol groups (6). TNF-α as an inflammation biomarker has been suggested to be involved in the generation of ROS that causes cisplatin toxicity and initiates inflammation (17). TNF-α can generate free radicals in the myocardium through a variety of mechanisms (18). As mentioned earlier, increased oxidative stress can induce mitochondrial dysfunction, or in turn, result in mitochondrial dysfunction or damage (19). TNF-α can activate caspase and therefore trigger apoptosis through a multitude of molecular mechanisms (20). These mechanisms include the death of receptor pathway that involves death domain-mediated protein-protein interactions, as well as the mitochondrial pathway that involves the release of cytochrome C (21). Also, liver function is considered as the main dose limiting side effect of oxidative damage of cisplatin (5,22). Cisplatin is known to accumulate in mitochondria of renal epithelial cells. It is the primary a target for cisplatin-induced oxidative stress resulting in loss of mitochondrial protein-SH, inhibition of calcium uptake and a reduction in the mitochondrial membrane potential, demonstrating that cisplatin induces ROS in renal epithelial cells primarily by decreasing the activity of antioxidant enzymes and by depleting intracellular antioxidants (23,24). An increase in the production of free radicals exacerbates the cisplatin induced oxidative stress process by deteriorating cellular enzymes (25). Many natural antioxidants are important in cisplatin liver dysfunction (18,26). Also, previous studies have shown that green tea is protective in cisplatin nephrotoxicity (27). Antioxidative enzymes are activated by GTE intake (28), and the antioxidative potency of human plasma increases with continual ingestion of green tea (29). Green tea can act as scavenger of free radicals and prevent oxidative damage (30). Mitochondria are not only one of the main cellular sources of ROS, but they also are a key target of ROS (31). Also, mitochondria are subcellular targets of cytokines, especially TNF; reduction of GSH and thiol groups (32). Green tea polyphenols are potent antioxidants with anti-inflammatory property, suggesting that they may have a protective role in hepatoprotection of cisplatin toxicity through reduction of inflammation and oxidative stress. Further studies are required to clarify the protective effect of green tea on molecular toxicity of cisplatin.

Acknowledgments
This study was supported by a grant from Vice Chancellor of Research of Hamadan University of Medical Sciences for student research center.

Table 1. Effect of green tea extract on the oxidative stress parameters and blood TNFα level rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>TNFα (pg/ml)</th>
<th>TAP (umol/mL)</th>
<th>TTG (nmol/mL)</th>
<th>ALT (U/mL)</th>
<th>AST (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21.0 ± 2.2</td>
<td>3.2 ± 0.32</td>
<td>0.16 ± 0.01</td>
<td>73.4 ± 1.5</td>
<td>72.25 ± 12.6</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>23.03 ± 2.05</td>
<td>2.9 ± 0.26</td>
<td>0.15 ± 0.02</td>
<td>97.76 ± 4.47</td>
<td>124 ± 15</td>
</tr>
<tr>
<td>Green tea</td>
<td>16.67 ± 2.5</td>
<td>5.04 ± 0.11**</td>
<td>0.18 ± 0.02</td>
<td>58.22 ± 4.47**</td>
<td>42.8 ± 7.9**</td>
</tr>
<tr>
<td>Cisplatin + green tea</td>
<td>18.6 ± 2.5</td>
<td>3.1 ± 0.28</td>
<td>0.16 ± 0.02</td>
<td>78 ± 2.06</td>
<td>52.6 ± 16</td>
</tr>
</tbody>
</table>

*Significantly different from control group at P < 0.05. **Significantly different from cisplatin group at P < 0.05.

Authors’ contributions
NA: Design of the study and laboratory methods. SM: Preparation of green tea extract. MS: Sampling and laboratory methods. ALH: Preparation of the paper draft and statistical analysis. NZ: Help to laboratory methods MM: English editing of the paper. AR: Help in design of the study and English editing of the paper.

Conflict of interests
The authors declared no competing interests.

Ethical considerations
The experiments were conducted according to the ethical norms approved by Ethics Committee Guidelines. It was confirmed by Ethical committee in Vice Chancellor of Research of Hamadan University of Medical Sciences (9112154641). Ethical issues (including plagiarism, misconduct, data fabrication, falsification, double publication or submission, redundancy) have been completely observed by the authors.

Funding/Support
This study was supported by a grant from Vice Chancellor of Research of Hamadan University of Medical Sciences (Grant No: 9112154641).

References
7. Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties: lessons from the green tea polyphenol, epigallocatechin