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Dietary interventions rich in fruits and vegetables in aging people can reverse or mitigate age-
related cognitive declines, delay the onset of neurodegenerative diseases (NDDs), and provide 
long-term health dividends. The novel food, popularly known as “Acai”, is a berry belonging 
to the Euterpe genus of tropical palms trees and natively found in South America. Euterpe 
oleracea has been given much attention among scientists due to its high antioxidant capacity 
compared to other fruits and berries. Additionally, acai pulp composition analysis found that 
it contains various biologically active phytochemicals. In this review, we focused on current 
evidence relating to acai berry neuroprotection mechanisms and its efficacy in preventing 
or reversing neurodegeneration and age-related cognitive decline. A number of studies have 
illustrated the potential neuroprotective properties of acai berries. They have shown that 
their chemical extracts have antioxidant and anti-inflammatory properties and maintain 
proteins, calcium homeostasis, and mitochondrial function. Moreover, acai berry extract 
offers other neuromodulatory mechanisms, including anticonvulsant, antidepressant, and 
anti-aging properties. This neuromodulation gives valuable insights into the acai pulp and 
its considerable pharmacological potential on critical brain areas involved in memory and 
cognition. The isolated chemical matrix of acai berries could be a new substitute in research 
for NDD medicine development. However, due to the limited number of investigations, there 
is a need for further efforts to establish studies that enable progressing to clinical trials to 
consequently prove and ratify the therapeutic potential of this berry for several incurable 
NDDs.
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A B S T R A C T

Introduction 
Higher fruit and vegetable consumption is positively 
connected with lower neurodegenerative diseases (NDDs) 
risk (1-3). In these conditions, the neurons are gradually 
but irreversibly lost (4). Although neurogenesis occurs at a 
limited level in adult human brains (5), this is overwhelmed 
by progressive neural degradations leading to movement 
disabilities and a chronic decline in cognitive functions 
in NDD patients (6). Moreover, existing treatments for 
NDDs target a small area of the brain and are focused 
on symptomatic relief only, without modifying disease 
progression, thereby resulting in permanent disability or 

death of those afflicted (7). Therefore, finding agents that 
can target disease aetiologies may prevent or delay disease 
progression. However, collective evidence demonstrates 
that nutritional conditions, dietary habits, bioactive 
compounds derived from food, and exercise prevent the 
age-dependent decline in memory and cognition (8-10). 
Many dietary foods, phytochemicals, herbal secondary 
metabolites, and polyphenols have pharmacological benefits 
for human diseases (11-13). Colourful berries, especially 
those rich in polyphenols, have revealed an improvement 
in the motor, memory, and cognitive functions that are 
deteriorated with aging in animals, including humans (14-
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16). In agreement with this, investigations on the effects of 
anthocyanins and carotenoid-rich fruits showed promising 
outcomes in the prevention or retardation of NDDs (17-
19). Data from a long-term cohort study of a 19.7-year 
follow-up of 2801 participants indicated that the risk of 
developing Alzheimer’s disease and related dementias was 
reduced in individuals whose diet was high in flavonoids 
(20). Additionally, clinical trials demonstrated that regular 
consumption of fruits, such as grapes, berries, and oranges, 
had positive effects on cognitive function in patients with 
mild cognitive impairment as well as in old, healthy people 
(21,22). Therefore, there is a general consensus that high 
fruit intake can improve or prevent cognitive decline, thus 
resulting in a growing interest in this area of research. 
In this regard, the current research seeks to conduct 
a literature review on the use of acai berry extracts as a 
pharmaceutical option for the treatment and prevention of 
NDDs.

Acai berry origin and chemical composition
In the light of the evidence presented above about diets 
and their potentials in enhancing brain health, this review 
paper will focus on one novel food, popularly known as 
“Acai”. It is a berry fruit of tropical palm trees belonging to 
the Euterpe genus, natively found in the Amazon region of 
South America and a few Caribbean islands (23). Euterpe 
edulis, Euterpe precatoria, and Euterpe oleracea are three 
species generating edible fruit, which were discovered in 
the Amazon region (23). The most consumed is Euterpe 
oleracea due to its high free radical scavenging capacity 
in vitro, which was discovered by Alexander Schauss in 
1995 (24, 25). Since then, this novel berry received much 
attention among food scientists, being called a ‘superfood’ 
(23). Euterpe oleracea berry is a small round palm fruit, 
1 to 2 cm in diameter, containing a single, dark coloured 
seed (25). A thin layer of edible purple pulp covers the seed 
(25). In the Para State of Brazil, acai palms are extensively 
distributed and cultivated (26), covering over 12 million 
hectares of flooded forest land near the Amazon River, and 
over 120 000 tons of the fruit is processed annually for its 
pulp (25). Acai berries are prepared before consumption 
by maceration in water to separate their seeds and obtain a 
thick, purple-coloured drink (‘acai pulp’) that is consumed 
as such or used in various types of drinks and food 
products (27). This viscous acai berry juice contains about 
2.4% protein and 5.9% lipid (28). 

In addition, nutritional composition studies on acai 
show the presence of dietary fibre, vitamin A, vitamin 
C, calcium, and iron (29). Commercialization of acai 
berry in its raw form is limited to the regional level in 
Brazil because it is naturally highly perishable (29). 
Consequently, national and international trading of 
acai berry usually occurs in a dry or frozen form (29). 
As a result of the highly rich bioactivate nutritional and 
phytochemical composition of acai berry, its pulp has 
been extensively examined (24,30). Acai berry pulp 

composition analysis found that it contains various 
biologically active phytochemicals and ample amounts 
of mono- and polyunsaturated fatty acids, which are not 
found in most fruits and other berries (31). Additionally, 
acai berry is a protein-rich fruit and has a high energy 
and nutritional value (Figure 1) (32). The phytochemicals 
found in acai pulp are anthocyanins, proanthocyanidins, 
and other flavonoids (24). Moreover, phytochemical 
analyses revealed that the acai berry has several 
types of anthocyanins, such as cyanidin, delphinidin, 
malvidin, pelargonidin, and peonidin; and has a great 
concentration of luteolin, quercetin, dihydrokaempferol, 
and chrysoerial (a unique flavone), as well as a number 
of other polyphenolics (30,33,34). According to Kang et 
al (35), the potential health effects of acai berry can be 
influenced by its flavonoid composition, such as orientin, 
homoorientin, vitexin, luteolin, chrysoerythol, quercetin, 
and dihydrokaempferol. A quantitative analysis of 
carotenoids in acai berry pulp detected five types of them: 
carotene, lycopene, astaxanthin, lutein, and zeaxanthin 
(36). 

A considerable body of evidence has been gathered 
demonstrating that acai berry extract and its bioactive 
content exhibit many pharmacological activities such as 
anti-inflammatory, antioxidant, anticarcinogenic, and 
neuroprotective properties (33,35,37-39). Furthermore, 
several in vivo and in vitro toxicity evaluations of acai 
berry extract showed its safety and lack of genotoxic 
effects after its administration (38,40-45). On the other 
hand, an earlier study showed that high acai berry extract 
concentrations (5%, 10%, and 15% [wt/vol]) caused 
mutagenic effects when tested in eukaryotic Saccharomyces 
cerevisiae yeast cells; however, the mutagenic possibilities 
on human are little due to the fact that the acai berry 
extract concentrations used in that investigation were 
extremely elevated (46).

Several scientific review papers on acai berry extracts 
have been published (47-49), however, their aims focused 
on its antioxidant potential or general health benefits. 
Consequently, to our knowledge, there are currently no 
review reports concerning the neuroprotective activities of 
acai berries against many pathological mechanisms found 
in NDDs. Thus, the present contribution aims to develop a 
literature review discussing the recent biological findings 
of using acai berry as a pharmacological alternative for the 
treatment and prevention of NDDs.

Potential protecting roles of acai extracts in age-related 
NDDs have been examined. Many of these diseases are often 
multifactorial, arising from a combination of aging, genetic 
disorder, and exposure to one or more environmental 
factors, which directly or indirectly cause several cellular 
aetiologies; oxidative stress, chronic neuroinflammation, 
excitotoxicity, mitochondrial dysfunction, and irregular 
accumulation of protein in brain tissues (48, 53-56). 
Experiments demonstrated that acai berry extracts 
confer its neuroprotection by showing antioxidant and 
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anti-inflammatory activities, inhibiting toxic protein 
aggregation, and restoring calcium homeostasis and 
mitochondrial function (49). Additionally, acai berry 
exhibited antidepressive and anticonvulsant activities, 
which may be beneficial for people with such neuro-
disorders (49). The neuromodulatory effects of acai 
berry diet supplementation on the vital brain areas that 
influence memory, cognition, and overall brain function 
will be discussed below.

Neuroprotective aspects of Euterpe sp. fruit
There is growing interest in acai fruits due to their 
broad usage in the food and cosmetics industries and 
their pharmaceutical potential. Acai berry parts such as 
pulp, leaves, roots, and seed oil were actually studied for 
pharmacological utilization, indicating specific biological 
activities based on their chemical composition. Potential 
health benefits of acai fruits are illustrated by many cell-
based (Table 1), animal, and clinical studies (Table 2) (49). 
Although there are limited experiments investigating 
acai’s impact on brain health or cognitive function, here 
we reviewed current results of acai berry protective actions 
on brain cells.

Antioxidant effects of acai berry
Oxidative damage is the common cytopathology of 
many NDDs. This damage is caused by an excessive 
accumulation of highly reactive free radicals associated 
with an impaired oxidant defence system, which is unable 
to adequately prevent this build-up of radicals (73,74). 
Free radicals, such as reactive oxygen (ROS), nitrogen 

(RNS) and chlorine (RCS) species, are defined as any 
atom or molecule that has one or more unpaired electrons 
(75). Oxidative damage can also be caused by some non-
radicals, oxidizing agents, and/or agents that are easily 
transformed into radicals (76).

Typically, a low concentration of free radicals is essential 
for normal cellular function, on the other hand, they are 
harmful if found out of their regular place or present in 
abnormally high concentrations (75,77). Data indicates 
that neural cells undergo necrotic or apoptotic death when 
they fail to adequately respond to oxidative stress (76,78, 
79). Cellular death by ROS occurs through the alteration 
of the essential biomolecules (lipid, protein, and nucleic 
acids) that can severely affect cell health and viability 
or induce a variety of cellular responses through the 
generation of secondary reactive species (76). The central 
nervous system (CNS) is more vulnerable to free radical 
damage than other organs due to the high level of oxygen 
intake by the brain, low levels of antioxidant enzymes, 
and abundance of highly oxidisable compounds, such as 
lipids, specifically the polyunsaturated fatty acids (80-83). 
Therefore, oxidative stress is one of the key mechanisms 
that contributes to neuronal degradation. 

There is a clear explanation for the role of antioxidants 
in neutralizing the free radicals and protecting cells 
from their damage (84). Thus, finding substances rich in 
antioxidants can help protect neurons in the brain from 
oxidative damage. Acai berry polyphenolic-rich extract 
has effective and direct scavenging activities against 
most reactive oxygen species (29,36). Recently, many 
findings have shown that acai berry extract is capable of 

Figure 1. Phytochemicals and nutrient composition of the Amazonian acai berry identified to date (24,31-33,37,50-52). 
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Major observed effects after acai exposure Level of Significance Dose Model Reference

↓ NF-κB after velutin exposure in RAW-blue cells induced by LPS and OxLDL. P < 0.05 Velutin acai extract; 5 µM, 2.5 µM, 1.25 µM, 
0.625 µM used in LPS induced cells.
Velutin acai extract; 10 µM, 5 µM and 2.5 µM on 
oxLDL induced cells.

In vitro. 
RAW-Blue mouse macrophage cell 
lines induced by LPS or oxLDL.

Kang et al (2011) 
(30)

↓ NO when compared with LPS treated microglia. P < 0.05 in acai ethanol, ethyl 
acetate, and acetone fraction. P 
< 0.001 in methanol extract

The acai extract concentrations ranged from 50 
to 1000 ̧μg/mL for the methanol, ethyl acetate, 
and acetone fractions and from 10 to 250 μg/mL 
for the ethanol fraction.

In vitro.
BV-2 murine microglial cells 
toxicity induced by LPS

Poulose et al 
(2012) (31)

↓ iNOS when compared with LPS treated microglia. P < 0.001 in all acai fractions

↓ TNF-α expression when compared with LPS alone. P = 0.009 in ethyl acetate 
fraction, P = 0.016 for acetone 
fraction, P < 0.001 for methanol 
and ethanol fractions

↓ p38-MAPK phosphorylation in LPS induced microglia. P < 0.001

↓ NF-κB phosphorylation except for the ethyl acetate fraction versus LPS alone. P < 0.001

↓ COX-2 expression in LPS induced microglia versus LPS alone. P < 0.001

↓ ROS by all acai genotypes in H2O2-treated cells. P < 0.05 Hydroethanolic extracts from six acai (Euterpe 
oleracea) genotypes (L09P09, L22P13, BRS-
PAMISTA, L11P09, L06P13 and L04P16) and an 
available commercial pulp at concentrations 0.5, 
5.0 and 50 μg/mL.

In vitro.
Human neuroblastoma cell line 
SH-SY5Y. Torma et al 

(2017) (51)

↓ TNF-α and IL-6 production by velutin in LPS-treated RAW 264.7 and C57BL/6 
macrophages. 

P < 0.05 Velutin isolated from the pulp of acai at 2.5 to 20 
μM (flavones as controls: luteolin, apigenin and 
chrysoeriol).

In vitro.
RAW 264.7 peripheral 
macrophages and mouse C57BL/6 
peritoneal macrophages with 
inflammation induced by LPS.

Xie et al (2012) 
(52)

↓ NF-κB activation by velutin in LPS-treated RAW 264.7 macrophages. P < 0.05

Inhibiting the degradation of NF-κB by velutin in LPS-treated RAW 264.7 macrophages. ND

Inhibiting p38-MAPK and JNK phosphorylation by velutin addition in LPS-treated RAW 
264.7 macrophages.

ND

↑ NDUFS7 and NDUFS8 expression. Before P < 0.001 or after P < 
0.01 rotenone exposure

Acai freeze-dried hydroalcoholic extract 5 μg/mL 
was added before and after rotenone.

In vitro.
Human neuroblastoma cell line 
(SHSY5Y) toxicity induced via 
rotenone exposure.

Machado et al 
(2016) (57)

↓ ROS levels and lipid peroxidation in both experimental designs. P < 0.001

Table 1. Recent findings of the neuroprotective roles of acai berry in in vitro models
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Major observed effects after acai exposure Level of Significance Dose Model Reference

↓ Cellular proliferation vs LPS control. P < 0.05 1 μg/mL of Freeze-dried hydroalcoholic acai 
extract.

In vitro 
BV-2 microglia cell line activated 
by LPS de Souza et al 

(2020) (58)

↓ ROS generation vs LPS control. P < 0.05

↓ Pro-inflammatory cytokines vs LPS control. P < 0.05

↓ Caspase when compared to LPS control. P < 0.05

↓ Cellular proliferation in LPS-activated microglia to the negative control level (cells 
with normal media).

ND 0.001–1000 μg/mL of freeze-dried hydroalcoholic 
acai extract

In vitro
Microglia EOC 13.31 cell line 
inflammatory induced by LPS or/
and nigericin

Cadoná et al 
(2021) (59)

↓ NO and ROS levels in LPS-activated microglia to the negative control level constituted 
of cells and normal media.

ND

↓ NO levels after acai treatment of nigericin treated microglia like negative control. ND

↓NLRP3-infammasome induced in microglia via LPS as well as microglia induced by LPS 
and nigericin to negative control level.

ND

↓ Caspase-1 and IL-1β expression levels in LPS and nigericin activated microglia to 
negative control.

ND

↑ ATP levels similar to negative control, which were dropped by LPS and nigericin 
activation.

ND

↓ Macrophage activation when compared with PHA-treated cells. P < 0.001 Freeze-dried hydroalcoholic acai extract 0.001-
1000 μg/mL.

In vitro.
Macrophage cell line RAW 264.7 
inflammation induced by PHA

Machado et al 
(2019) (60)

↓ ROS induced by PHA. P < 0.01 at 100 μg/mL  
P < 0.001 at 0.001–10 μg/mL 
and 1000 μg/mL

↓NO generated by PHA. P < 0.05 at 1000 μg/mL, 
P < 0.01 at 0.001, 0.01, 0.1 and 
500 μg/mL, and  P < 0.001 at 
0.005, 0.05, 1, 10, 100 μg/mL

↓ Interferon‐gamma (IFN‐γ) when compared with PHA-treated cells. P < 0.01

↓ IL-1 β, IL-6, and ↓TNF-α when compared with PHA-treated cells. P < 0.001

↑ IL-10 which was reduced via PHA. P < 0.001

↓ NLRP3 inflammasome protein levels that were induced by PHA. P < 0.001

↓ Caspase 1,3,8 which were increased via PHA. P < 0.001

↓ Caspase 8 which were increased via PHA. P < 0.05

↓ NO production and iNOS expression that caused by LPS-exposure. P < 0.01 2% of lyophilized acai pulps. In vitro.
BV-2 murine microglial cells 
were pretreated with 10% blood 
serum from rats fed acai then 
inflammation induced by LPS.

Carey et al 
(2017) (61)

↓ TNF-α in microglia activated by LPS exposure. P < 0.05

Table 1. Continued
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Major observed effects after acai exposure Level of Significance Dose Model Reference

↓ NF-κB activity in LPS-induced DI TNC1 astrocytes. P < 0.001 Hydroalcoholic acai extract 6.25, 12.5, 25, and 
50 μg/mL. 

In vitro.
Rat astrocyte (DI TNC1) cell line 
stably transfected with the NF-κB 
or Nrf2-Antioxidant Response 
Element (ARE) constructs.

Ajit et al (2016) 
(62) 

↑ ARE activity to 2-3 fold by acai alone. P < 0.001

↑ ARE activity in the presence of LPS to 10-fold by acai exposure. P < 0.001

↑ Antioxidant pathway Nrf2 expression, reaching 3-4 fold in untreated DI TNC1 
astrocytes.

P < 0.05 at acai of 12.5 μg/
mL, and P < 0.001 at 25 and 50 
μg/mL

↑ Antioxidant pathway HO-1 expression, reaching 3-4 fold in untreated DI TNC1 
astrocytes.

P < 0.05 at 12.5 μg/mL acai, 
and P < 0.01 25 and 50 μg/
mL acai.

↓ Toxicity of Ca2+ influx caused by dopamine application. P < 0.05 1-5 µg/mL of aqueous extracts of freeze-dried 
acai pulp.

In vitro.
Rodent Primary hippocampal 
neurons (HT22).

Poulose et al 
(2014) (63)

↓ The bafilomycin A1-induced build-up of autophagic vacuoles. P = 0.001

Reversed the reduction in the length of primary basal dendrites caused by wortmannin. P < 0.05

↑ Neuronal viability following Aβ1–42 exposure. P < 0.01 at 5 μg/mL, and P < 
0.05 at 50 μg/mL 

0.5, 5 and 50 μg/mL aqueous extract of freeze-
dried acai pulp and skin powder.

In vitro.
Rat PC12. San Wong et al 

(2013) (64)Fibril inhibition and alteration on Aβ1–42 morphology. P < 0.05 

↑ [3H] TBOB binding to GABAA receptors in cortical neurons. P < 0.05 at 5% acai and P < 
0.001 at 25% acai

0–25% commercial clarified Euterpe oleracea 
Martius juice from Amazon Dreams (Belém, Pará, 
Brazil) in Hank’s buffer (250 μL final volume).

In vitro.
Primary cultures of neocortical 
neurons and cortical astrocytes

Arrifano et al 
(2018) (66)

↑ [3H] flunitrazepam binding to GABAA receptors by acai at concentration 25% in 
cortical neurons.

P < 0.01

↓ [3H] GABA uptake in cortical neurons by acai at concentration 25%. P < 0.05

↓ [3H] GABA uptake in astrocytes. P < 0.01 at 10% and P < 0.001 
at 25% acai.

Abbreviations: Aβ1-42, amyloid beta1-42; ATP, adonise diphosphate; COX-2, cyclooxygenase-2; GABA, gamma-aminobutyric acid; H2O2, Hydrogen peroxide; HO-1, heme oxygenase-1; [3H] TBOB, [3H]-t-butylbicycloorthobenzoate; IL-1β, interleukin 
1 beta; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; ND, not determined; NDUFS7, NADH: Ubiquinone Oxidoreductase Core Subunit S7; NDUFS8, NADH: Ubiquinone 
Oxidoreductase Core Subunit S8; NF-κB, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NO, nitric oxide; Nrf2, nuclear factor erythroid 2-related factor 2; OxLDL, oxidized low-density lipoprotein; p38-MAPK, p38 
mitogen-activated protein kinase; ROS, reactive oxygen species; TNF-α, tumour necrosis factor-α’ PHA, phytohemagglutinin.

Table 1. Continued
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Table 2. Acai berries neuroprotective effects in in vivo models

Major observed effects Level of Significance Dose and duration Model Reference

↑ Chemotaxis response in CL2355 strain. P < 0.001 at 100 μg/mL acai Fresh acai pulp was 
extracted using 80% 
methanol 50, 100, 200 μg/
mL for 48 hours.

In vivo.
Caenorhabditis elegans strain CL2355, 
which express Aβ1–42 and impairs their 
chemosensory system.
Transgenic worms (AM141) as 
Huntington’s disease model which 
express polyQ
Caenorhabditis elegans strain N2 (wild 
type)

Peixoto et al (2016) 
(29).

↓ PolyQ aggregation when compared with AM141 control worms. P < 0.01 at 50 μg/mL and P < 0.001 at 
100 and 200  μg/mL

↓ Intracellular ROS accumulation in N2 worms. P < 0.001

↓ Protein oxidation levels in N2 worms. P < 0.05 at 300 μg/mL

  Improved performance in the cognitive testing in aged rats. P < 0.05 2% of lyophilized acai pulps 
for 8 weeks.

In vivo
19-month-old Fischer 344 rats.

Carey et al (2017) 
(61).

Protected against behavioural alterations caused by PTZ. P < 0.001 and P < 0.01 10 µL/g /d of acai juice for 
4 days.

In vivo.
Male Swiss mice. Seizure model induced 
by pentylenetetrazol (PTZ)

Souza-Monteiro et al 
(2015) (65).Prevented electrocortical changes induced by PTZ. P < 0.001

↓ Lipid peroxidation in the cerebral cortex that induced by PTZ. P < 0.05

The total energy intake, carbohydrate, protein, total lipids, and metabolic equivalent of task were 
unchanged after acai consumption.

ND 200 g/d of acai pulp for 
4 weeks.  

In vivo 
Thirty-five healthy women.

Barbosa et al (2016) 
(67).

↓ ROS level when compared with its level before acai intake. P = 0.004

↑ Total antioxidant capacity of polymorphonuclear cells (PMN) cells by 104% compared to before 
acai intake.

P < 0.001

↑ CAT activity after acai intake when compared with the baseline results. P < 0.001

↓ Protein carbonyl after acai intake when compared with the baseline results. P = 0.027

↑ Sulfhydryl groups after acai when compared with the same groups at baseline. P < 0.001

↓ NADPH-oxidoreductase-2 (NOX2) in aged animals fed with acai-enriched diets. P < 0.05, EO and EP Freeze-dried acai powder = 2 
% of the diet for 8 weeks.
Euterpe precatoria (EP) and
Euterpe oleracea (EO).

In vivo.
19-month-old male Fischer rats (aged 
rats).

Poulose et al (2017) 
(68).↓ NF-κB in acai-consumed aged rats. P ≤ 0.01 EO, and EP

↑ Glutathione S-transferase (GST) and SOD were observed in acai fed aged rats. P < 0.05, EO and EP

↑ Nrf2 transcription factor expression in acai fed rats. P < 0.05, EO and EP

Prevented CCl4 inhibition of creatine kinase activity in rats. P < 0.01 in cerebral cortex, and 
hippocampus, while P < 0.001 in 
cerebellum

Acai frozen pulp via oral 
gavage at a dose of 7 μL/g /d 
for 14 days.

In vivo.
Male Wistar rat experimental model of 
hepatic encephalopathy provoked by 
CCl4.
The animals also presented neurological 
symptoms.

De Souza et al (2016) 
(69).

↓ Lipid peroxidation induced by CCl4 in rat’s cerebellum and cerebral cortex. P < 0.05

↓ Heightened carbonyl levels induced by CCl4 in rats. P < 0.01 in cerebellum, and P < 0.001 
in cerebral cortex and hippocampus

↑ CAT activity which was reduced in rat brain by CCl4. P < 0.05 in hippocampus and P < 0.01 
in cerebellum

↑ SOD activity which was reduced in CCl4 -treated rats. P < 0.05 in cerebral cortex, and P < 
0.01 in cerebellum and hippocampus

http://www.herbmedpharmacol.com


Neuroprotective activities of acai berries

Journal of Herbmed Pharmacology, Volume 11, Number 2, April 2022http://www.herbmedpharmacol.com 173

Major observed effects Level of Significance Dose and duration Model Reference

Improved neurobehavioral disturbance caused by MeHg when compared with MeHg only treated 
group. 

P < 0.05 Clarified acai juice, 10 µL/g 
/d for 8 days.

In vivo.
Male Swiss mice. Toxicity induced by 
MeHg.

Crespo-López et al 
(2019) (70).

↓ Lipid peroxidation which was elevated by MeHg. P < 0.05

↓ The elevated level of nitrite in MeHg treated animals to similar to those of P < 0.05

the control with when compared with MeHg only treated group.
Prevented the reduction of TERT mRNA expression in the brain by MeHg.

P < 0.001

Acai juice reduced the effects of mercury exposure while having no effect on mercury levels in the 
CNS.

ND

Prevented the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 
caused by CCl4 in the serum of rats.

P < 0.05 7 µL/g /d of acai juice for 
14 days.

In vivo.
Wistar rat model for hepatic 
encephalopathy induced by CCl4.
The animals used in   these experiments 
presented neurological symptoms 
associated with hepatic encephalopathy.

de Souza et al (2015) 
(71).

↓ TNF-α, IL-1β and IL-18 levels in the cerebral cortex, hippocampus, and cerebellum which was 
induced by CCl4.

P < 0.05

Prevented the anhedonia-like state induced by LPS. P < 0.01 10 μL/g /d body weight of 
acai juice for 4 days.

In vivo.
Mouse model of depressive-like behavior 
induced by LPS.

Souza-Monteiro et al 
(2019) (72).

↑ Muscle activity which was completely inhibited by LPS. P < 0.05

Prevented immobility or the absence of response to stimulus caused by LPS. P < 0.001

↓ The lipid peroxidation which was generated by LPS exposure. P < 0.05 in striatum and prefrontal 
cortex, and P < 0.001 in hippocampus

↓ Nitrite levels that was induced in the hippocampus by LPS exposure. P < 0.01

↑ TERT mRNA expression, illustrating its anti-aging effect. P < 0.01 in the hippocampus, and P 
< 0.001 in striatum and prefrontal 
cortex

↑ TERT mRNA expression in all tested brain areas which was reduced by LPS treatment. P < 0.001

Abbreviations: Aβ1-42, amyloid beta1-42; CCl4, carbon tetrachloride; COX-2, cyclooxygenase-2; IL-18, interleukin-18; IL-1β, interleukin 1 beta; LPS, lipopolysaccharide; MeHg, methylmercury; ND, not determined; NF-κB, nuclear factor kappa B; 
Nrf2, nuclear factor erythroid 2-related factor 2; polyQ, polyglutamine; ROS, reactive oxygen species; SOD, superoxide dismutase; TERT mRNA, telomerase reverse transcriptase; TNF-α, tumour necrosis factor-α.

Table 2. Continued
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regulating the antioxidant/pro-oxidant status (67,85-87). 
The chemical contents of acai berry, such as carotenoids, 
ascorbic acid, and phenolic compounds are responsible 
for their effective antioxidant actions (57,88). 

Poulose et al. (68) showed that an acai berry rich diet 
could modulate oxidative stress and enhance endogenous 
antioxidant enzyme defence through decreased pro-
oxidant NADPH-oxidoreductase-2 (NOX2) and increased 
expression of nuclear factor erythroid 2-related factor 2 
(Nrf2) in the hippocampus and frontal cortex of elder 
rat brains. A study on a hepatic encephalopathy animal 
model with neurological symptoms illustrated that 14 days 
of acai berry treatment prevented creatine kinase (CK) 
activity inhibition, antioxidant enzyme catalase (CAT) 
activity reduction, oxidative damage involving increasing 
levels of lipid peroxidation and protein carbonyl groups 
in the cerebral cortex, hippocampus, and cerebellum 
(69). Moreover, the frozen pulp was able to restore the 
decrease in superoxide dismutase (SOD) activity in the 
hippocampus (69). A study investigating antioxidant 
activity of different acai berry genotypes and commercial 
pulp found that all hydroethanolic extracts had a potent 
scavenging property in reducing ROS produced by 
hydrogen peroxide (H2O2) in the human neuroblastoma 
SH-SY5Y cell line and no difference in the antioxidant 
activity was seen between different genotypes by ABTS 
and deoxyribose assays (51). Moreover, acai berry extract 
addition resulted in a significant reduction in ROS to 
the negative control levels in lipopolysaccharide (LPS)-
activated microglia (58, 59). The behavioural analysis 
revealed that the consumption of commercial acai berry 
juice could improve neurobehavioral disturbance as 
a consequence of methylmercury (MeHg) as well as 
reduced lipid peroxidation and nitrite level induced by 
MeHg (70). In this study reduction of telomerase reverse 
transcriptase (TERT) mRNA expression in the brain as a 
consequence of mercury exposure was prevented by acai 
berry consumption. Thus, these studies give valuable 
evidence about the protection potential of acai berries 
against oxidative stress on brain cells, which could have a 
role in the treatment and/or prevention of NDDs.

Anti-inflammatory effects of acai
Deleterious conditions involving damage of the nervous 
system components by the immune response are known 
as neuroinflammatory disorders (53). This immune 
response in the brain can be triggered by infection, 
injury, trauma, genetic defect, or toxins causing resident 
immune cell (astrocytes and microglia) activation. This is 
followed by inflammatory signalling secretion (cytokines 
and chemokines) such as tumour necrosis factor-alpha 
(TNF-α), interleukin 1 beta (IL-1β), and interleukin-6 (IL-
6), leading to recruitment and infiltration of peripheral 
blood cells into the brain parenchyma (89).

One of the most evident pharmacological activities 
of acai berry, which has been recorded in many works 

of literature, is its anti-inflammatory effect. In vitro 
evaluation of acai berry on an inflammatory macrophage 
model induced via phytohemagglutinin demonstrated its 
anti-inflammatory potential through antioxidant pathway 
and modulation of nod-like receptor pyrin containing 3 
(NLRP3) inflammasome proteins as well as a decrease 
of all pro-inflammatory cytokines and increase of anti-
inflammatory cytokine interleukin-10 (IL-10) levels 
(60). Two percent acai berry administration to the diets 
of aging rats displayed a reduction of proinflammatory 
transcription factor nuclear factor κB (NF-κB) in the 
hippocampus (68). Carey et al (61) reported that aged 
rats fed with acai berry showed improved performance in 
cognitive testing compared with control rats. Blood serum 
from the same rats also had attenuated LPS-induced nitric 
oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitric 
oxide (NO), and TNF-α production in BV-2 murine 
microglial cells. Acai berry exposed an inflammatory 
modulation by reducing TNF-α, IL-1 β, and IL-18 levels 
in the brains of rat models of hepatic encephalopathy that 
presented many neurological symptoms (71). 

Moreover, Poulose et al (31) confirmed that acai berry 
extracts attenuated oxidative- and inflammatory-stress-
induced signals on BV-2 microglial cells subjected to 
LPS through reduced NO release and decreased levels 
of inducible iNOS, COX-2, p38-mitogen-activated 
protein kinase (MAPK), TNF-α, and NF-κB. Similarly, 
acai berry extract was capable of reducing increased 
proinflammatory cytokines, IL-1β, IL-6, and TNF-α in 
LPS activated BV-2 microglial (58) Data from Kang et 
al (30) indicated that five flavonoids were isolated from 
acai berry pulp and only one of them, velutin, was able 
to inhibit the activation of inflammatory mediator factor 
NF-κB in RAW-blue cells induced by LPS. Investigating 
the modulatory effects of velutin isolated from acai 
berry on LPS-induced proinflammatory cytokines 
showed that it has the most potent inhibitory effects 
compared to other structurally similar flavones against 
NF-κB, mitogen-activated protein kinase p38, and JNK 
phosphorylation, consequently reducing the TNF-α 
and IL-6 production (52). A study exploring acai berry 
regulation of the oxidative/proinflammatory (NF-κB) and 
anti-oxidative (Nrf2) pathways in DI TNC1 astrocytes 
showed a reduction of LPS-induced NF-κB activity and 
induction of the anti-oxidation pathway through Nrf2 
and HO-1 expression (62). Moreover, acai berry extract 
decreased cellular proliferation, IL-1β and restored 
NO in inflammatory activated microglia (59). Thus, it 
suggests the vital role of antioxidant-rich acai berry in the 
regulating and inhibition of the inflammatory response. 

Calcium homeostasis
For several physiological conditions, calcium (Ca2+) in 
neurons plays a significant role in controlling neuronal 
excitation, neurotransmitter release, gene expression, 
and eventually learning and memory (63). Excitotoxic 
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elevation of intraneuronal Ca2+ initiates lethal signalling 
cascades leading to necrotic cell death through free radical 
damage or/and activation of Ca2+ dependent catabolism 
enzymes (90). Moreover, this also triggers transcriptional 
activation of apoptotic programs (91, 92). Furthermore, 
Ca2+ can activate several vital enzymes that have the 
capability to destroy neurons, including protein kinase C, 
Ca2+/calmodulin dependent protein kinase II, and nitric 
oxide synthase (93). Excessive Ca2+ build-up can also result 
in mitochondrial dysfunction (94,95). Neuronal Ca2+ 
dysregulation is linked with age-related neurodegenerative 
disorders (63). Thus, memory and cognitive functions can 
be maintained by correct Ca2+ homeostasis (63). 

An in vitro study, acai berry pre-treatment protected 
rat primary hippocampal neurons from dopamine-
induced Ca2+ dysregulation (63). Despite the need for 
further investigations to address the acai berry role in 
intraneuronal Ca2+ regulation, the results from previously 
conducted experiments suggest that quercetin and 
myricetin (other flavonoids) regulated intraneuronal Ca2+ 
concentration (96) and these bioflavonoids are richly found 
in acai berry pulp (63, 97). Since the majority of NDDs are 
associated with Ca2+ elevation, finding substances that can 
maintain and/or restore Ca2+ homeostasis gives promise to 
the prevention of these diseases.

Recovering of the mitochondrial function
Mitochondrial dysfunction has been implicated in 
neuronal death in all NDDs. Mitochondria are vital 
organelles in cells that perform crucial roles to maintain 
cellular function and viability (98,99). Mitochondrial 
damage leads to impaired energy generation, imbalanced 
calcium concentration, mitochondrial DNA (mtDNA) 
alteration, increased ROS, and release of pro-apoptotic 
factors, ultimately resulting in cell death via apoptosis 
or necrosis (98-100). Acai berry extract restored the 
impairment adonise diphosphate (ATP ) levels in LPS, 
and nigericin inflammatory inducted microglia (59). In 
the same study, acai berry extract significantly lowered 
the pro-apoptotic caspase 1 level to control level (59). 
Increased levels of pro-apoptotic proteins, such as caspase 
1, 3, and 8, were reduced in LPS exposed BV-2 microglia 
after acai berry extract treatment (58). An in vitro 
investigation pointed out that acai berry hydroalcoholic 
extract was able to reverse mitochondrial dysfunction 
induced by rotenone exposure in neuronal-like SH-
SY5Y cells (57). In this study, functional recovery of 
the mitochondrial electron transport chain in neurons 
was mainly by overexpression of nuclear mitochondrial 
complex I subunit genes (NDUFS7 and NDUFS8) (57). 

Protection from toxic protein accumulation 
There is ample evidence that “proteotoxicity” is one of the 
consequences of neurodegeneration in NDDs (101, 102). 
Proteotoxicity is a condition affecting neuron viability, and 
it occurs when there is overproduction and/or impaired 

clearance of toxic protein in and around the brain tissue 
(101, 102). Neurons affected by toxic proteins undergo cell 
death due to impairment of the transcription process of 
specific genes, mitochondrial function, nucleocytoplasmic 
transport, and the protein/RNA quality control system 
(102-104). One of the main causes of protein aggregation 
is dysfunctional autophagy (105). In normal cellular 
autophagy, unwanted cytoplasmic substrates are degraded 
by lysosomes (105). Inhibition of autophagy causes protein 
alteration of the “quality control” mechanism leading to 
the accumulation of unwanted proteins and organelles in 
the brain, subsequently neuronal death (63). Therefore, 
protein homeostasis in the brain can be maintained by the 
autophagy mechanism.

Acai berry pre-treatment improved cell viability 
following exposure to human amyloid-β protein 1–42 
(Aβ1–42) (101). Moreover, in this study, acai berry extracts 
exhibited the most fibril inhibition and alteration of Aβ1–42 
morphology when compared with pure phenolics. Acai 
pre-treatment of neurons significantly reversed the basal 
dendrite length reduction and autophagy dysfunction 
induced by autophagy inhibitors such as bafilomycin A1 
or wortmannin (63). Similarly, a diet supplemented with 
2% of acai berry exhibited upregulation of autophagy 
markers in the hippocampus and frontal cortex of aging 
rat brains (68). In mutant strain Caenorhabditis elegans 
CL2355, which expressed Aβ1–42 and have an impaired 
chemosensory system, pre-treatment with extract of acai 
berry enhanced the chemotaxis response and decreased 
both polyglutamine (polyQ) aggregation and protein 
oxidation levels (29). Collectively these studies reinforced 
that acai berry extracts exhibit protection against the 
excessive accumulation of misfolded cytotoxic proteins, 
which are pathological hallmarks of many NDDs. Thus, 
acai berry improves the protein homeostasis through 
molecular mechanisms and consequently leads to 
attenuation of neurotoxicity.

Anticonvulsant properties
It is reported that there is an association between the 
common neurodegenerative dementia syndromes and 
epileptic seizure phenomena, particularly in Alzheimer’s 
disease (AD), Parkinson’s disease dementia, prion diseases, 
and Huntington’s disease (106). Epilepsy is a chronic 
neurological condition characterized by a predisposition 
to produce repeated epileptic seizures that are not triggered 
(107). Moreover, current anticonvulsant treatments do 
not suppress seizures in about 30% of patients (65). Thus, 
new treatment strategies based on bioactive compounds 
in diet or plants are practical options for avoiding, halting, 
or even reversing the seizures and epilepsy incidents (65).

Acai berry juice was able to protect against behavioural 
changes and reduce oxidative stress caused by seizures 
induced by pentylenetetrazol administration in mice (104). 
Hence, this study suggested that acai berry juice displayed 
anticonvulsant effects and additional neuroprotective 
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effects against lipid peroxidation connected with 
seizures. Similarly, acai berry treatment at 5%–25% 
concentration on primary cultures of cortical neurons 
and astrocytes showed its potential in the treatment 
of seizures and epilepsies by improving GABAergic 
neurotransmission (66). In this study, acai berry was able 
to interact with the GABAA receptor through increased 
agonist flunitrazepam binding and decreased antagonist 
t-butylbicycloorthobenzoate (TBOB) binding as well as 
inhibiting GABA reuptake, consequently leading to the 
accumulation of endogenous GABA in the synaptic cleft 
and enhanced inhibitory neurotransmission in the brain.

Antidepressant and anti-aging effects of acai 
In most NDDs, patients develop depression symptoms in 
some stage of disease progression (108). This substantially 
leads to increased cognitive and motor symptom 
impairment, morbidity, stress on families, and the cost 
of illness (108). Since many synthetic anti-depression 
medications have various side effects, such as nausea, 
anxiety, drowsiness, insomnia, and sexual dysfunction, it 

is considered critical in finding a new antidepressant herb 
with fewer side effects (109). However, in vivo investigation 
by Souza-Monteiro et al. (72) on mouse models of 
depressive-like behaviour showed improvements in 
electromyographic measurements and prevention of the 
despair-like and anhedonia behaviours after acai berry 
treatment. In the same study, acai berry decreased the 
oxidative stress that developed in the depressive mouse 
model, thus protecting against hippocampal neuron loss. 
Moreover, this research highlighted that acai treatment 
caused an increase in telomerase reverse transcriptase 
(TERT mRNA) expression, illustrating its anti-aging and 
neuroprotective action.

Conclusion
Currently, considerable research attention has focused 
on acai berry due to its extraordinarily high antioxidant 
capacity. Some studies have illustrated the potential 
neuroprotective actions of acai. Many NDDs are the 
result of (1) oxidative stress, (2) chronic inflammation, (3) 
mitochondrial dysfunction, (4) calcium level elevation, 

Figure 2. Known neuroprotective actions of Euterpe sp. fruits. Acai berry extracts are able to prevent neurodegenerative, maintain neurons’ survival and 
cognitive function via the number of mechanisms summarized in this figure. First, the potential antioxidant action of acai berry extract involves decreasing 
oxidative stress markers such as NOX2, lipid peroxidation, ROS, and RNS, and increasing antioxidant defences system like Nrf2, CAT, CK, and SOD. 
Second, the anti-aging action resulted in an increase in the TERT mRNA. Third, the anti-inflammatory action of acai caused a reduction in inflammatory 
markers such as TNF-α, IL-1β, IL-18, IL-6, COX-2, iNOS, p38-MAPK, NF-κB, and NLRP3 while a rise in anti-inflammatory agent IL-10. Fourth, acai berry 
extracts are able to maintain the mitochondrial function via repairing the ATP production impairment and induce the expression of NDUFS7 and NDUFS8 
while reducing the levels of the pro-apoptotic proteins, including caspases 1, 3, and 8. Fifth, acai berry extracts help to maintain the protein and calcium 
homeostasis in the neurons. Abbreviations: ATP, adonise diphosphate; CAT, catalase; CK, creatine kinase; COX-2, cyclooxygenase-2; IL-10, interleukin 10; 
IL-18, interleukin-18; IL-1β, interleukin 1 beta; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; NDUFS7, NADH: Ubiquinone Oxidoreductase Core 
Subunit S7; NDUFS8, NADH: Ubiquinone Oxidoreductase Core Subunit S8; NF-κB, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; 
NOX2, NADPH-oxidoreductase-2; Nrf2, nuclear factor erythroid 2-related factor 2; p38-MAPK, p38 mitogen-activated protein kinase; RNS, reactive nitrogen 
species; ROS, reactive oxygen species; SOD, superoxide dismutase; TERT mRNA, telomerase reverse transcriptase; TNF-α, tumour necrosis factor-α.
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and (5) accumulation of misfolded or aggregate-
proteins. Therefore, reducing the formation or 
improving the clearance of toxic bodies contributing to 
neurodegeneration may consequently prevent NDDs. 
Acai pulp fractions have shown promising beneficial 
effects and multi-target properties in regulating all five 
pathological processes, which have interdependent 
mechanisms (Figure 2). Moreover, acai berry extracts give 
hope in controlling other neurological disorders through 
other neuromodulatory properties such as anticonvulsant, 
antidepressant and anti-aging. This offers valuable 
insights into the acai berry pulp and its considerable 
pharmacological potential on brain cells. Although a 
number of bioactivate nutritional and phytochemical 
compositions in acai extracts have been identified, more 
research is being conducted to identify more biologically 
active components with therapeutic potential. The isolated 
chemical matrix of acai berry could be a new branch in 
research for NDDs medicine development.
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