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Implication for health policy/practice/research/medical education:
This study demonstrated that aqueous extract of Crassocephalum rubens leaves has inhibitory effect on mitochondrial 
permeability transition pore (MPTP) opening, especially at low doses. The extract could be useful in managing diseases in which 
MPTP opening is implicated.
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Introduction: Mitochondrial permeability transition pore (MPTP) has been implicated in a wide 
variety of diseases such as cancer, neurodegenerative diseases, and diabetes. Crassocephalum 
rubens is a leafy vegetable consumed in different parts of Africa for the management of 
symptoms of diabetes mellitus, inflammation, malaria, and blood pressure. The present study 
evaluated the modulatory effects of aqueous leaf extract of C. rubens (ACR) and gliclazide on 
MPTP in the pancreas of Wistar albino rats in vitro. 
Methods: Pancreatic mitochondria were isolated from experimental animals using standard 
protocols. Furthermore, MPTP was induced using various concentrations (15, 22.5, 30, and 
37.5 mmol/L) of glucose and CaCl2 (3 µM). Alterations in MPTP and ameliorative potential 
of different concentrations of ACR (8, 24, 40, 56 μg/mL) and gliclazide (0.054 mg/mL) were 
monitored spectrophotometrically via changes in absorbance at 540 nm for 12 minutes, under 
sodium succinate energized condition. 
Results: It was observed that 30 mmol/L, 37.5 mmol/L D-glucose, and Ca2+ significantly 
induced MPTP opening by 0.635, 5.10, and 9.95 folds, respectively, an effect that was reversed 
by gliclazide and ACR, in a none-dose dependent manner. In addition, ACR at 56 μg/mL in 
conjunction with Ca2+ opened the MPTP. 
Conclusion: Data from this study suggest that gliclazide and ACR, especially at the lower 
concentrations, possess significant inhibitory effects against MPTP opening in the pancreas 
of male Wistar albino rats and, therefore, could be useful in protecting beta-cell death usually 
associated with diabetes mellitus, as well as other conditions in which MPTP opening is 
implicated.
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Introduction
Diabetes mellitus is a chronic disease that adversely affects 
the quality of life of patients as well as the well-being of 
their families and society at large. It is among the highest 
causes of adult mortality, with huge economic implications 
worldwide. In 2017, about US$ 727b was the global 
expenditure on diabetes (1). The prevalence of the disease 
has increased steadily, rising from 285 million people in 
2009 to 463 million people in 2019. Furthermore, about 
578 million people and 700 million people are expected 
to have diabetes by 2030 and 2045, respectively (2). The 
disease is a metabolic disorder characterized by a chronic 
increase in fasting blood glucose level (≥200 mg/dL) 
and an alteration in lipids, carbohydrates, and protein 
metabolism, in which insulin action is either diminished 
or completely lost due to change in its secretion, reduction 
in its activity, or a combination of these two factors (3). 

Diabetes mellitus can be classified into several types; 
however, there are two main forms: type 1 and type 2 
diabetes mellitus (4). A commonly shared comorbidity 
of both types of diabetes is beta-cell death (5), which is a 
key event in the pathogenesis of both diseases (6). Much 
as mitochondria are involved in beta-cell function and 
survival, their critical role in triggering beta-cell apoptosis 
has been firmly established (7). Studies have shown that 
beta-cells are more susceptible to oxidative stress as a 
result of relatively low expression of antioxidant enzymes, 
such as glutathione peroxidase and catalase (6). This could 
then contribute to beta-cell dysfunction and eventual 
death in the conditions of persistent hyperglycemia-
induced mitochondrial reactive oxygen species (mtROS) 
production (8). 

An important means through which mitochondria 
mediate apoptosis is via the induction of mitochondrial 
permeability transition pore (MPTP) opening, which is 
characterized by an abrupt increase in the permeability of 
the inner mitochondrial membrane to solutes lesser than 
1.5 kDa in size (9). Opening of this pore is involved in 
pathways of apoptosis, and it has become a pharmacological 
target in drug development (10). A wide variety of triggers 
such as Ca2+, ROS, and inorganic phosphate (Pi) are 
activators of MPTP opening (11). In addition, studies have 
shown that high glucose concentration is a potent trigger 
of mitochondrial dysfunction and MPTP opening (12,13). 

The use of plants as medicine has been well documented 
over the years, and with availability of modern equipment 
and means of analyses, the active principles of these 
plants have been isolated, and their therapeutic potential 
described, leading to the development of drugs (14). Earlier 
studies have reported the modulatory effect of plants on 
MPTP opening, usually triggered by Ca2+ (15-17). This 
modulatory effect is usually ascribed to the presence of 
health promoting bioactive compounds in the plants. The 
bioactive compounds account for the ability of plants to 
mitigate oxidative stress, a major culprit in MPTP opening 
(18). Crassocephalum rubens is a traditional leafy vegetable 

consumed in different parts of the world. Extracts of the 
leaves were reported to contain polyphenolic compounds 
such as flavonoids and phenolic acids (19). The effects 
of this plant in the management of diabetes, cancer, 
inflammation, liver dysfunction, and other ailments have 
been well documented (4,20,21). However, its effect on 
MPTP opening, triggered by either Ca2+ or glucose, has not 
been documented. This study, therefore, aims to evaluate 
the effects of aqueous leaf extract of C. rubens (ACR) and 
gliclazide, a standard antidiabetic drug, on MPTP in the 
pancreas of Wistar rats as a way of delineating part of their 
mechanism of antidiabetic actions.

Materials and Methods
Chemicals and Reagents
Mannitol, D-sucrose, D-glucose, sodium succinate, 
bovine serum albumin (BSA), ethylene glycol tetraacetic 
acid (EGTA), 2-[4-(2-hydroxyethyl)-piperazin-1-yl]-
ethanesulfonic acid (HEPES), gliclazide, CaCl2, rotenone, 
potassium hydroxide pellets, and spermine were 
purchased from Sigma- Aldrich (St. Louis, MO, USA). All 
other chemicals and reagents were of analytical grade.

Plant materials and authentication
The leaves of C. rubens were obtained from a farm in Ado-
Ekiti, Ekiti State, Nigeria. The leaves were identified and 
authenticated at the Department of Plant Science, Ekiti 
State University, Ado-Ekiti, Nigeria, where a voucher 
number was deposited for the plant at the Herbarium 
Department with voucher number FHI 112047

Processing of Crassocephalum rubens leaf extract
The C. rubens leaves were air-dried at room temperature 
and ground to powder. Twenty grams of the sample was 
soaked in 200 mL of distilled water for 24 hours and then 
filtered using a Whatmann filter paper (No. 1). The filtrate 
was concentrated to dryness and preserved at 4˚C until 
needed.

Experimental animals
Five male albino Wistar rats (weighing between 180 and 
200 g) were acquired from the Animal Care Facility, Afe 
Babalola University, Ado-Ekiti, Nigeria. The rats were 
allowed to acclimatize for 15 days, with unrestricted 
access to water and rat chow. 

Isolation of mitochondria from pancreas
Low ionic strength mitochondria were isolated in 
accordance with a previously described method (22). The 
animals were sacrificed by cervical dislocation, dissected, 
and the pancreas was immediately excised and trimmed 
to remove excess tissues. It was washed in isolation buffer 
(210 mM mannitol, 70 mM sucrose, 5 mM Hepes-KOH, 
and 1 mM EGTA at pH 7.4) until a clear wash was obtained. 
It was then weighed and minced with a pair of scissors. 
A 10% suspension was prepared after homogenizing 
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the pancreas on ice. The suspended tissue (pancreas) in 
isolation buffer was implored into a refrigerated Sigma 
centrifuge (3-30K, Germany), where the nuclear fraction 
and cell debris sedimented by low-speed centrifugation 
at 2300 rpm for 5 minutes. The supernatant obtained 
was re-centrifuged at the same speed and time to remove 
unbroken cells. The supernatant was centrifuged at 13 000 
rpm for 10 minutes to sediment the mitochondria. The 
brown mitochondria pellets obtained after the supernatant 
were discarded and washed by re-suspending in wash 
buffer (210 mM mannitol, 70 mM sucrose, 5 mM Hepes-
KOH and 0.5% BSA at pH 7.4) and centrifuged at 12 000 
rpm for 10 minutes. The mitochondria were immediately 
suspended in a solution of ice-cold swelling buffer (210 
mM mannitol, 70 mM sucrose, and 5 mM HEPES-KOH 
at pH 7.4), then dispensed in Eppendorf tubes in aliquot 
and placed on ice for immediate use. 

Mitochondria swelling assay
Mitochondria swelling and mitochondrial 
membrane permeability transition were evaluated 
spectrophotometrically at 540 nm by measuring the 
decrease in absorbance of mitochondria suspension 
in the presence and absence of triggering agents: Ca2+ 

(in the form of CaCl2) and glucose, for 12 minutes 
(23). Modulatory effects of both aqueous C. rubens leaf 
extract and gliclazide, dissolved in distilled water on 
mitochondrial swelling, were evaluated.

Statistical analysis
Data analyses were done with GraphPad Prism 5 to 
calculate the means. Significance between the treatments 
was expressed in real numbers as induction fold. P < 0.05 
was considered significant.

Results 
Figure 1 shows the effects of the triggering agent and 
spermine on the pancreas MPTP. In the absence of 
triggering (NTA: non-triggering agent), the pancreas 
MPTP was not open. However, with the addition of 
exogenous calcium ion in the form of calcium chloride, 
as a triggering agent, MPTP opening was induced but was 
greatly reversed by spermine, a well- known inhibitor of 
MPTP opening. Figure 2 shows the effects of different 
concentrations of glucose on pancreas MPTP. Both 30 
mmol/L and 37.5 mmol/L of glucose induced MPTP 
opening, while lower glucose concentrations did not 
induce MPTP opening. In Figure 3, it was observed that 
different concentrations of C. rubens leaf extract did 
not induce pancreas MPTP opening in the absence of 
triggering agents (Ca2+ and 37.5 mmol/L glucose). Figure 
4 shows the effect of aqueous leaf extract of C. rubens on 
pancreas MPTP in the presence of Ca2+. It was observed 
that lower concentrations of the extract did not induce 
MPTP opening, even in the presence of Ca2+ (triggering 
agent). However, pancreas MPTP opening was induced in 

the presence of the highest concentration of the extract 
(56 µg/mL) and Ca2+. In Figure 5, it was observed that 
different concentrations of C. rubens leaf extract in the 
presence of 37.5 mmol/L of glucose did not induce the 
opening of MPTP in the pancreas of Wistar rats. As 
presented in Figure 6, 0.054 mg/mL gliclazide inhibited 
pancreas MPTP opening in the presence of triggering 
agents (Ca2+ and 37.5 mmol/L glucose).

Figure 1. Effects of Ca2+ and spermine on pancreas mitochondrial 
permeability transition pore. NTA: No triggering agent (absence of Ca2+); 
TA: Triggering agent (presence of Ca2+).

Figure 2. Effect of glucose on pancreas mitochondria permeability 
transition pore. NTA: No triggering agent (absence of Ca2+); TA: Triggering 
agent (presence of Ca2+).
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Table 1 shows that the induction fold of Ca2+, 30 .0 
mmol/L glucose, and 37.5 mmol/L glucose were 9.95, 
0.635, and 5.10, respectively. It was observed that pancreas 
MPTP induction fold of Ca2+ was almost twice that of 37.5 
mmol/L glucose, which was the highest concentration of 
glucose used in this study.

Discussion
Mitochondrial membrane permeability transition pore is 
a non-specific channel formed on the inner mitochondrial 
membrane, allowing the flow of substances ≤1.5 kDa and 
leading to depletion of the membrane potential of the 
mitochondria (Δψm), which is a critical requirement for 
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Figure 3. Effect of Crassocephalum rubens leaf extract on pancreas 
mitochondria permeability transition pore. NTA: No triggering agent 
(absence of Ca2+); TA: Triggering agent (presence of Ca2+); ACR: 
aqueous extract of C. rubens leaves.

Figure 5. Effect of Crassocephalum rubens leaf extract on pancreas 
mitochondria permeability transition pore in the presence of glucose. 
NTA: No triggering agent (absence of Ca2+); TA: Triggering agent 
(presence of Ca2+); ACR: aqueous extract of C. rubens leaves.

Figure 4. Effects of various concentrations of Crassocephalum rubens 
leaf extract on pancreas mitochondria permeability transition pore in the 
presence of Ca2+. NTA: No triggering agent (absence of Ca2+); TA: Triggering 
agent (presence of Ca2+); ACR: aqueous extract of C. rubens leaves.

Figure 6. Effect of gliclazide on pancreas mitochondria permeability 
transition pore in the presence of glucose and Ca2+. NTA: No triggering 
agent (absence of Ca2+); TA: Triggering agent (presence of Ca2+); 
Gliclazide: 0.054 mg/mL gliclazide.
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the production of ATP. Excess calcium in mitochondrial 
matrix is a potent MPTP inducer (24). Implication 
of MPTP in disorders such as muscular dystrophy, 
amyotrophic lateral sclerosis, hepatocarcinogenesis, 
ischemia/reperfusion injury, diabetes, and cancer has been 
well documented (25-27). In recent times, MPTP opening 
has been identified as a promising drug target (28,29). 
According to previous studies using pancreatic β-cell 
lines (MIN6 and INS-1), pancreatic MPTP opening could 
have both beneficial and deleterious effects. For instance, 
prevention of MPTP opening with cyclosporin A reduced 
glucose-induced secretion of insulin (30). Conversely, 
inhibition of MPTP opening reduced Pdx1 deficiency-
induced cell death in mouse insulinoma MIN6 cells (31). 
However, a more recent study established the protective 
effect of imeglimin, a novel antihyperglycemic drug, in 
high glucose-induced β-cell apoptosis (32). Moreover, 
it was also reported that the same drug inhibited high 
glucose-induced MPTP opening and eventual cell death in 
human endothelial cells (HMEC-1) (33), thereby making 
inhibition of MPTP opening an important mechanism of 
action of Imeglimin (34). 

In the present study, it was discovered that the addition 
of exogenous Ca2+ expectedly induced MPTP opening 
in isolated mitochondria from pancreas of Wistar rats, a 
situation that was reversed by spermine. This observation 
confirms the established effect of a known activator (Ca2+) 
and inhibitor (spermine) on mitochondria swelling, 
implying that it was indeed an MPTP event (35,36). 

Hyperglycemia accounts for the majority of damaging 
consequences of type 2 diabetes and is a marker of 
the disease (37). High glucose concentration has been 
known to induce MPTP opening (12). Moreover, it is well 
established in the literature that both acute and chronic 
hyperglycemia promotes oxidative stress-induced β-cell 
apoptosis in diabetes (38). In the present study, the effect 
of glucose on MPTP opening in the pancreas of Wistar 
rats was carried out directly on isolated mitochondria. 
It was noted that glucose at 30 and 37.5 mmol/L caused 
MPTP opening. This observation is similar to previous 
studies in which glucose concentrations ≥ 30 mmol/L 
induced MPTP opening. However, as alluded to earlier, 
the studies were not directly on isolated mitochondria, as 
most studies on the MPTP-inducing effect of glucose were 

done with mitochondria isolated from either cell lines or 
experimental animals that have undergone some kinds of 
treatment (12,26,33). It should be noted that even at 37.5 
mmol/L, the MPTP inductive effect of glucose was lower 
than that of Ca2+, as observed from the induction fold 
presented in Table 1. This underscores the potency of Ca2+ 

to induce MPTP.
Several studies have reported the ability of medicinal 

plants to modulate MPTP. These MPTP modulatory 
effects are usually considered as a part of the mechanism 
actions of such plants, usually due to the presence of 
important phytoconstituents (39). The polyphenolic 
compounds identified in the extracts of C. rubens (19) 
might be responsible for the observed modulatory effect 
on MPTP. This is in line with earlier studies reporting 
the modulatory effects of flavonoids and phenolic acids 
on MPTP via several mechanisms (18,40). Therefore, the 
modulatory effects of C. rubens on MPTP might be related 
to the presence of these phytochemicals. We observed that 
C. rubens at all the concentrations tested did not induce 
MPTP opening in the absence of triggering agents (Ca2+ 

and glucose) as well as in the presence of glucose (37.5 
mmol/L), an indication of cytoprotection. However, in the 
presence of Ca2+, the highest concentration of the extract 
(56 µg/mL) induced MPTP opening, which suggests 
cytotoxicity. This could suggest that the MPTP-inducing 
potential of the extract at the highest concentration was 
potentiated in the presence of Ca2+. Our observation aligns 
with the maxim that a non-toxic substance may exhibit 
toxicity at a high dose while a toxic substance might be 
non-toxic at a low dose (41).

Previous studies have reported the modulatory effects 
of oral antidiabetic agents on mitochondrial function 
and metabolism. Biguanides were reported to modulate 
mitochondrial membrane permeability transition 
pore opening in intact cells, isolated mitochondria. 
Hyperglycemia is a marker of the disease. Hyperglycemia 
is accounted for the majority of damaging consequences 
of type 2 diabetes via the inhibition of complex one of 
the electron transport chain (37,42,43). In this study, 
gliclazide, which belongs to the sulfonylurea class of 
antidiabetic drugs, was observed to prevent MPTP 
opening in the presence of both glucose and Ca2+. This 
is an indication of the ability of gliclazide to protect cells 
against apoptosis involving mitochondria and could be 
important for β-cells preservation in type 2 diabetes (44). 
Our result is in agreement with an earlier study which 
showed that gliclazide protected cells from oxidative 
stress-induced apoptosis in a manner involving restoration 
of mitochondrial membrane potential (45). This is in 
contrast to the proapoptotic effect of glibenclamide in 
human islets (46). This finding supports the outcome of 
earlier research in which the safety profile of gliclazide 
was confirmed in both experimental and epidemiological 
studies (47,48).

Table 1. Change in the absorbance of isolated pancreas mitochondria and 
corresponding induction fold of Ca2+ and glucose

Groups Change in absorbance Induction fold

NTA -0.002 0.00

TA -1.99 9.95

30 mmol/L glucose -0.127 0.635

37.5 mmol/L glucose -1.03 5.10

NTA: No triggering agent (absence of Ca2+); TA: Triggering agent 
(presence of Ca2+).
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Conclusion
This study notably utilized mitochondria isolated from the 
pancreas of Wistar rats in evaluating the effect of C. rubens 
leaf extract as well as gliclazide on MPTP opening. It could 
be reasonably inferred from available results from this 
study that C. rubens could have an antiapoptotic effects via 
the inhibition of MPTP opening. However, moderation 
is important, especially at high doses of the extracts. In 
addition, the outcome of this study further underlines 
the protective effect of gliclazide in cells, especially in 
situations of hyperglycemia-induced oxidative stress, 
which is usually a prelude to MPTP opening.
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