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Implication for health policy/practice/research/medical education:
This review emphasises the pharmacological effect of epigallocatechin gallate (EGCG) from Camellia sinensis in ameliorating the 
imbalance of Th/Treg cell differentiation observed in autoimmune disorders. The efficacy of EGCG in attaining immunological 
tolerance through this mechanism makes it a promising candidate for the invention of a safe and potent novel medicine. This 
review not only discusses the benefits of EGCG in autoimmune treatments but also considers the necessity for prospective studies 
to address the stability issue of EGCG.
Please cite this paper as: Arifka VI, Gani AP, Murwanti R. Epigallocatechin gallate, the primary bioactive component from 
Camellia sinensis: a review on immunomodulatory effects in autoimmune diseases by balancing the differentiation of Th and 
Treg cells. J Herbmed Pharmacol. 2024;13(2):176-187. doi: 10.34172/jhp.2024.48284.

Autoimmune disease is a chronic condition that requires treatment with prolonged use of 
drugs. Consequently, there is a significant occurrence of adverse effects and toxicity associated 
with the medicine. On the other hand, epigallocatechin gallate (EGCG), the primary bioactive 
catechin in green tea (Camellia sinensis), has been demonstrated to possess anti-inflammatory 
properties and exhibit therapeutic effects in autoimmune disorders. Therefore, EGCG can be 
considered a complementary and alternative medicine to address the limitations of current 
treatment. Turning to the disease pathology, the balance between helper T-cell (Th) and 
regulatory T-cell (Treg) differentiation is the crucial aspect that needs to be regulated in order 
to attain immunological tolerance and suppress the incidence and severity of autoimmune 
disease. Here, we aim to comprehensively review the immunomodulatory effect of EGCG 
on the balance of Th/Treg cell differentiation in diverse autoimmune disorders. Scientific 
databases, including Scopus, PubMed, Science Direct, and Google Scholar, were searched 
using the keywords autoimmune AND (epigallocatechin-3-gallate OR epigallocatechin gallate 
OR EGCG) AND (Thelper OR Th OR Treg OR CD4). Our review revealed that EGCG has 
ability to repair the imbalance of Th/Treg cell differentiation in  rheumatoid arthritis (RA), 
multiple sclerosis (MS), ulcerative colitis (UC), and autoimmune uveitis (AU) by inhibiting 
the differentiation of Th1 and Th17 cells while promoting the differentiation of Th2 and Treg 
cells, as well as improving the clinical conditions of the tested animals. Hence, it might be 
inferred that EGCG exhibits considerable promise as a viable complementary and alternative 
therapeutic option for autoimmune disease.
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Introduction
Autoimmune disease refers to a condition in which the 
immune response attacks healthy cells due to a failure 
in immunological tolerance (1). The imbalance of 
differentiation among CD4+ T-cell subsets, specifically 

helper T-cell (Th) and regulatory T-cell (Treg), has been 
reported to be involved in the pathogenesis of autoimmune 
disorders (2,3). In this context, while Th cell is responsible 
for inducing inflammatory and autoimmune responses, 
Treg cell plays a constrasting role by exerting negative 
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Immunomodulation by EGCG on the balance of Th/Treg cells

regulatory functions to maintain immunological tolerance 
and suppress autoimmunity (2,4,5).

Currently, the management of autoimmune diseases 
requires prolonged use of drugs, which has been associated 
with significant adverse effects and considerable toxicity. 
Furthermore, the currently available medicine is limitedly 
effective for a particular group of patients (6,7). Therefore, 
the development of a complementary and alternative 
medicine that demonstrates both efficacy and safety in the 
treatment of autoimmune diseases is indispensable.

Epigallocatechin gallate (EGCG), the primary bioactive 
compound present in green tea (Camellia sinensis), has 
been reported to possess potent anti-inflammatory and 
immunosuppressive properties in animal models of 
autoimmune disease (4,8-10). EGCG is the most dominant 
catechin contained in green tea, constituting a range of 
3.31% to 5.94% of the total composition of dry green tea 
leaves. Meanwhile, the proportions of other catechins 
present in green tea are as follows: epigallocatechin 
(EGC) ranges from 1.31% to 5.35%, epicatechin gallate 
(ECG) ranges from 1.51% to 3.54%, and epicatechin 
(EC) ranges from 0.54% to 0.87% (11). In addition to 
its higher proportion in green tea, EGCG has been 
demonstrated to possess the greatest biological activity 
as an anti-inflammatory, antioxidant, and anticancer 
agent when compared to EGC, ECG, and EC (2,12). This 
article highlights the considerable potential of EGCG to 
be utilised as a complementary and alternative therapy 
for autoimmune disease by comprehensively reviewing 
the immunomodulatory effect of EGCG on the balance 
of Th and Treg cell differentiation in diverse autoimmune 
disorders.

Methods
This review was conducted by searching scientific search 
engines, including Scopus, PubMed, Science Direct, and 
Google Scholar, using the keywords autoimmune AND 
(epigallocatechin-3-gallate OR epigallocatechin gallate 
OR EGCG) AND (Thelper OR Th OR Treg OR CD4). We 
only included original research articles that were published 
between the years 2000 and 2023 and have been indexed 
with a minimum Scopus Q3 ranking. In order to obtain 
reliable data that aligns with the objectives of this study, 
we excluded articles that examined the effects of EGCG in 
combination with other substances and those that lacked 
a negative or normal control group for comparison with 
the treatment group.

Results
Autoimmune diseases that are mediated by CD4+ T-cells
The pathogenesis of several autoimmune diseases is 
reportedly mediated by the effector subsets of CD4+ 
T-cells. These diseases, also known as T-cell mediated 
autoimmune disorders, include rheumatoid arthritis 
(RA), multiple sclerosis (MS), ulcerative colitis (UC), 
Crohn’s disease, autoimmune uveitis (AU), autoimmune 

premature ovarian failure, autoimmune myocarditis, and 
autoimmune thyroid diseases (13-20). In this review, 
our primary focus was directed towards RA, MS, UC, 
and AU. RA is characterised by systemic autoimmunity 
with chronic inflammation of the synovial joints. This 
condition can eventually lead to cartilage and bone 
degeneration (9,21). MS is a persistent inflammatory 
condition characterised by the immune system’s attack 
on the central nervous system (CNS) resulting in the 
formation of lesions and the development of significant 
neurological and cognitive impairments (22). UC, a type 
of inflammatory bowel disease, is a chronic inflammation 
affecting the rectum and colon due to an immune reaction 
targeting self-tissues (23,24). AU refers to intraocular 
inflammation caused by an autoimmunity response that 
affects the middle layer of the eye or the uveal tract, 
including the iris, cylindrical body, and choroid (25).

An imbalance in the differentiation of CD4+ T-cell in 
various autoimmune diseases
The incidence and severity of T-cell mediated autoimmune 
disorders in mouse models have been linked to the 
increased differentiation of Th1 cells and Th17 cells, as well 
as the decreased differentiation of Th2 cells (13,17,19,26-
28). Moreover, it has been observed that another subset 
of CD4+ T-cells, known as Treg cells, may also play 
a function similar to that of Th2 cells. Othy et al (29) 
observed a correlation between diminished differentiation 
of Treg cells and the worsening of nerve inflammation in 
a mouse model of MS. Meanwhile, increased Treg cell 
differentiation has been shown to ameliorate the clinical 
scores and autoimmune symptoms in mouse models of 
RA, MS, UC, and AU diseases (30-34). The phenomenon 
explained in this section provides evidence that T-cell 
mediated autoimmune disorders are characterised by an 
imbalance in the differentiation of Th1 and Th17 cells 
versus Th2 and Treg cells. This condition has been found 
to be more strongly associated with the development of 
autoimmune diseases, as it has been reported in patients 
with RA, MS, UC, and AU (20,35-38). An indication of 
this imbalance can be observed through fluctuations in cell 
populations and the expression of associated cytokines, as 
elaborated in the next section.

The mechanism of naive CD4+ T-cell differentiation 
becomes a subset of effectors
The naive CD4+ T-cell differentiates into a minimum 
of four distinct subsets of effectors, namely Th1, Th2, 
Th17, and Treg cells (39-42). Prior to this phase of 
differentiation, an innate immune system is activated 
by antigenic stimulation, leading to the production of 
specific promoter cytokines that stimulate the activation 
of the T-cell receptor (TCR). Following this, TCR engages 
with a major histocompatibility complex class II and 
bounds to an antigen-presenting cell. Subsequently, 
naive CD4+ T-cells are encouraged to enter the cell cycle 
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and subsequent differentiation into distinct subsets, as 
dictated by specific promoter cytokines that activate the 
TCR during the preceding step (2,43,44). Furthermore, a 
formed subset thereafter produces the effector cytokines, 
which possess the ability to induce inflammatory responses 
and autoimmunity (proinflammatory cytokines) or 
suppress them (anti-inflammatory cytokines). To sum up, 
the promoter cytokines, transcription factors, and effector 
cytokines for each subset have been recapped in Table 1.

Referring to Table 1, it can be observed that TGF-β 
acts as a promoter cytokine in both Th17 and Treg cell 
differentiation. This ambivalent role of TGF-β tends to 
be confusing due to the contrasting effects of Treg and 
Th17 cell on the pathogenesis of autoimmune disease. 
Nonetheless, numerous scientific evidence indicates that 
the upregulation of TGF-β in test specimens, such as the 
spleen and plasma, are more closely associated to the 
increased differentiation of Treg cell rather than that of 
Th17 cell. Previous investigations have emphasised IL-6 
and IL-1 β as the prominent promoter cytokines involved 
in the differentiation of Th17 cells (9,24,32,52).

The role of Th1, Th2, Th17, and Treg cells in inflammatory 
response and autoimmunity
In previous studies, Wang et al (51), Wong et al (5), and 
Wu et al (2) reported that Th cells are responsible for 
inducing inflammatory responses and autoimmunity. 
However, as it turns out, the role of Th1 and Th17 cells 
in the pathogenesis of autoimmune diseases differs 
from that of Th2 cells. To clarify, the Th1 and Th17 cells 
induced inflammatory responses and autoimmunity via 
the secretion of proinflammatory effector cytokines, as 
outlined in Table 1 (73,74). On the other hand, Maspi et 
al (67) stated that the Th2 cell inhibits the differentiation 
of Th1 and Th17 cells, as well as inflammatory responses 
and autoimmunity. More specific to the inhibition of 
Th1 cell differentiation, the effector cytokines of the Th2 
cell, namely IL-4 and IL-13, have the ability to inhibit the 
production of IL-12 (67). Similar to the Th2 cell, the Treg 
cell also possesses the ability to suppress the differentiation 
of Th1 and Th17 cells as well (29,32,67,72,75,76). 
According to Guo et al (32), it has been reported that Treg 
cell acts as the negative regulator of the adaptive immune 

system. This role makes Treg cell crucial in suppressing 
the excessive immunological response and maintaining 
immune homeostasis that occur in autoimmune diseases 
(32).

The immunomodulatory effect of EGCG on the differentiation 
of Th1, Th2, Th17, and Treg cells in various autoimmune 
diseases
As mentioned in previous section, an imbalance in the 
differentiation of Th1 and Th17 cells versus Th2 and 
Treg cells is observed in the pathogenesis of RA, MS, UC, 
and AU. Prior studies have demonstrated that EGCG, a 
bioactive compound in green tea (C. sinensis), has the 
ability to modulate this imbalance in the mentioned 
diseases. The data has been  summarised respectively for 
each disease in Tables 2-5.

Discussion and prospective wiews
The data summarised in Tables 2, 3, 4, and 5 indicate that 
EGCG could improve the clinical condition of the tested 
animal with autoimmune disorders such as RA, MS, UC, 
and AU through its ability to modulate the balance of CD4+ 
T-cell subsets differentiation. In this particular instance, 
EGCG could reduce the differentiation of Th1 and Th17 
cells by inhibiting the activation of transcription factors 
and decreasing the availability of promoter cytokines. 
Subsequently, it resulted in an elevation in the rate of 
Th1 and Th17 cells differentiation and the production of 
effector cytokines by these cells. Meanwhile, an opposite 
pattern was noticed in the transcription factors, promoter 
cytokines, differentiation, and effector cytokines of Th2 
and Treg cells (4,8,9,21,24,50,77-80). The mechanism by 
which EGCG modulates the differentiation of Th1, Th2, 
Th17, and Treg cells is illustrated in Figure 1. 

Furthermore, prior studies reported that the ability of 
EGCG to modulate the function of Th1 cells is not only 
resulting in an incline in IL-2 expression (78), but EGCG 
could also lower the expression of the IL-2 receptor (IL-
2R), which is essential for the biological effects of IL-2 
(44,81,82). Moreover, Wang et al (81) confirmed that 
EGCG has the ability to diminish STAT5 phosphorylation, 
an indicator of IL-2/IL-2R signaling. Based on these data, 
it can be signified that EGCG has the ability to exert a 

Table 1. Profile of promoter cytokines, transcription factors, and effector cytokines of Th1, Th2, Th17, and Treg cells

CD4+ T-cell 
subsets Promoter cytokines Transcription factors

Effector cytokines
References

Proinflammatory Anti-inflammatory

Th1 IL-12 T-bet, STAT1, STAT4 IFN-γ, TNFα, IL-2 - (15,16,45–50)

Th2 IL-4 GATA3, STAT6 - IL-4, IL-5, IL-13 (51-58)

Th17 TGF-β/IL-6 or IL-6/IL-1β RORγt, STAT3 IL-17A/F, IL-21, IL-22, IL-23, 
IL-26 - (50,59-65)

Treg TGF-β FOXP3, SMAD2, SMAD3 - TGF-β, IL-10 (32,43,66-72)

FOXP3: fork-head box P3; IL: interleukin; RORγt: retinoic acid-related orphan receptor gamma t; STAT: signal transducer and activator of transcription; 
TGF: transforming growth factor; TNF: tumor necrosis factor; Th: helper T-cell; Treg: regulatory T-cell; T-bet: T-box transcription factor TBX21; IFN: 
interferon.
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Table 2. Immunomodulatory effect of epigallocatechin gallate (EGCG) on Th and Treg cells differentiation in rheumatoid arthritis (RA)

No. Method Dosage of EGCG T-cells 
Immunomodulatory effect of EGCG

Clinical improvement References
Effects on T-cell populations Effects on transcription factors Effects on cytokines

1

In vivo 40 mg/kg i.p. 3×/week for 
2.5 weeks on CIA mouse

Th1  - - TNF-α expression in joint↓

Incidence and arthritis score↓** 
Level of inflammation and 
cartilage damage in joints↓

(9)

Th17 Th17 cell population in the spleen↓ p-STAT3 expression in the 
spleen↓ IL-1β, IL-6, and IL-17 expression in joint↓

Treg Treg cell population in the spleen↑  - IL-10 and TGF-β mRNA expression in splenocytes↑

In vitro 1–50 µM on splenocytes
Th17  - p-STAT3 expression↓ IL-17 mRNA expression↓

 -
Treg  - FOXP3 mRNA expression↑ IL-10 mRNA expression↑

2

In vivo 50 mg/kg i.p. 3x/week for 
6 weeks on CIA mouse

Th1  - - TNF-α expression in joint↓*
Arthritis score↓**
Level of inflammation and 
cartilage damage in joints↓ (21)

Th17 Th17 cell population in the spleen↓ p-STAT3 expression in the spleen 
and joint↓*** IL-1β, IL-6, and IL-17 expression in joint↓*

Treg Treg cell population in the spleen↑ -  -

1 and 10 µM on 
splenocytes

Th17  - p-STAT3 expression↓ IL-17 and IL-21 mRNA expression↓ 
- 

Treg  - FOXP3 mRNA expression↑ - 

3 In vivo 10 mg/kg p.o. 3×/week for 
3 weeks on CIA mouse

Th1  -  - TNF-α ↓** and IFN-γ expression in plasma ↓* 
TNF-α ↓** and IFN-γ expression in joint↓** Arthritis score and joint 

thickness↓** Swelling and 
erythema in the front and back 
paws↓

(76)
Th17  -  - IL-6 expression in plasma ↓** 

IL-1β ↓* and IL-6 expression in joint↓****

Treg Treg cell population in dLNs↑  - IL-10 expression in joint↑*

4 In vivo 20 mg/kg i.p. 3×/week on 
CIA mouse

Th17 Th17 cell population in the spleen↓ RORγt mRNA expression in 
splenocytes↓ IL-17 and IL-21 mRNA expression in splenocytes↓ Weight loss and arthritis 

score↓**
Level of inflammation and 
cartilage damage in joints↓****

(8)

Treg Treg cell population in the spleen↑ FOXP3 mRNA expression in 
splenocytes↑  -

-: not analyzed; ↓: decreased; ↑: increased; * P < 0.05; ** P < 0.01; *** P < 0.005; **** P < 0.001; p.o.: per oral; i.p.: intraperitoneal; CIA: collagen-induced arthritis; FOXP3: fork-head box P3; mRNA: messenger ribonucleic acid; IL: interleukin; 
RORγt: retinoic acid-related orphan receptor gamma t; STAT: signal transducer and activator of transcription; TGF: transforming growth factor; TNF: tumor necrosis factor; Th: helper T-cell; Treg: regulatory T-cell; IFN: interferon.

http://www.herbmedpharmacol.com


Arifka et al

Journal of Herbmed Pharmacology, Volume 13, Number 2, April 2024            http://www.herbmedpharmacol.com180 

Table 3. Immunomodulatory effect of epigallocatechin gallate (EGCG) on Th and Treg cells differentiation in multiple sclerosis (MS)

No. Method Dosage of EGCG T-cells 
Immunomodulatory effect of EGCG

Clinical improvement References
Effects on T-cell populations Effects on transcription factors Effects on cytokines

1 In vivo
15 mg/kg p.o. 2×/day for 10 days 
on mouse before the EAE mouse 
model was established

Th1  - - TNF-α expression in dLNs↓* Disease index↓*
Inflammation in the CNS↓* (77)

IL-4 expression in dLNs↔

2 In vivo

EGCG supplementation at 
0.6%(w/w) together with feed for 
30 days before the EAE mouse 
model was established

Th1 Th1 cell population in CNS↓** T-bet mRNA expression in CNS↓*

IL-12 mRNA expression in plasma ↓* and 
splenocytes↓*
IFN-γ expression in spleen ↓*** and LN↓** 
TNF-α expression in spleen and LN↓**

Disease index↓
Inflammation and
demyelination in the 
CNS↓*

(4)
Th17 Th17 cell population in CNS↓** RORγt mRNA expression in CNS↓*

IL-6 expression in spleen and LN↓** 
IL-1β expression in plasma↓*
IL-17 expression in spleen↓*** and LN↓***
IL-23 mRNA expression in plasma↓* and 
splenocytes↓*

Treg
Treg cell population in spleen and 
LN↑***
Treg cell population in CNS↑***

 - - 

3

In vitro 10 μM on splenocytes

Th1 Th1 cell population↓***
T-bet expression, STAT1 
phosphorylation, and STAT4 
phosphorylation↓**

 -

-

50
Th17 Th17 cell population↓** RORγt expression ↓*** and STAT3 

phosphorylation↓** IL-23R expression↓*

Treg Treg cell population↑ SMAD2 and SMAD3 expression↔  -

In vivo

EGCG supplementation at 
0.6%(w/w) together with feed for 
42 days before the EAE mouse 
model was established

Th17  - - IL-6 and IL-6R expression in plasma↓* -

-: not analyzed; ↓: decreased; ↑: increased; ↔: not affected; * P < 0.05; ** P < 0.01; *** P < 0.005; CNS: central nervous system; dLNS: draining lymph nodes; LN: lymph nodes; EAE: experimental autoimmune encephalomyelitis; mRNA: 
messenger ribonucleic acid; IL: interleukin; RORγt: retinoic acid-related orphan receptor gamma t; STAT: signal transducer and activator of transcription; TNF: tumor necrosis factor; Th: helper T-cell; Treg:regulatory T-cell; T-bet: T-box 
transcription factor TBX21; IFN: interferon.
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Table 4. Immunomodulatory effect of epigallocatechin gallate (EGCG) on Th and Treg cell differentiation in ulcerative colitis (UC) 

No. Method Dosage of EGCG T-cells 
involved

Immunomodulatory effect of EGCG
Clinical improvement References

Effects on T-cell populations Effects on 
transcription factors Effects on cytokines

1 In vivo
50 mg/kg/d i.p. for 10 days on 
DIC mouse

Th1  -  - IL-2 and IFN-γ expression in plasma↓*
DAI score and colon mucosal 

injury score↓* (78)Th2  -  - IL-4 expression in plasma↑*

Treg  -  - IL-10 expression in plasma↑*

2 In vivo 50 and 100 mg/kg/d p.o. for 7 
days on DIC mouse

Th17 Th17 cell population in 
spleen↓*** (dose-dependent)

STAT3 expression in 
colon↓*** (dose-
dependent)

IL-6 and IL-17 expression in plasma and colon↓* (dose-
dependent) DAI score↓* (dose-

dependent) (24)

Treg Treg cell population in spleen↑**  
(dose-dependent)  - TGF-β and IL-10 expression in plasma and colon↑* (dose-

dependent)

3 In vivo

50 mg/kg/d p.o. for 3 days on 
DIC mouse

Th1 - - TNF-α expression in plasma↓**** and colon↓
DAI score, body weight loss, 
and colon shortening↓****

(79)
Th17 - - IL-1β expression in plasma↓****

IL-6 expression in plasma ↓**** and colon↓*

50 mg/kg/d p.o. for 4 weeks 
before the DIC mouse model was 
established

Th1 - - TNF-α expression in plasma↓ and colon↓****
DAI score, body weight loss, 
and colon shortening↓****Th17 - - IL-1β expression in plasma↓ 

IL-6 expression in plasma and colon↓****

-: not analyzed; ↓: decreased; ↑: increased; *P < 0.05; **P < 0.01; ***P < 0.005; p.o.: per oral; i.p.: intraperitoneal; DIC: dextran sulfate sodium-induced colitis; DAI: disease activity index; IL: interleukin; STAT: signal transducer and 
activator of transcription; TNF: tumor necrosis factor; TGF: transforming growth factor; Th: helper T-cell; Treg: regulatory T-cell.

Table 5. Immunomodulatory effect of epigallocatechin gallate (EGCG) on Th cell differentiation in autoimmune uveitis (AU)

No Method Dosage of EGCG T-cells 
Immunomodulatory effect of EGCG

Clinical improvement ReferencesEffects on T-cell 
populations

Effects on transcription 
factors Effects on cytokines

1 In Vivo
192,5 mg/kg/2 days p.o. for 26 
days on mouse before the EAU 
mouse model was established

Th1  - - TNF-α mRNA expression in 
retina↓* Diameter enlargement of major retinal 

vessels↓ 
Attenuation of visual functions↓*

Clinical score↔

(80)

Th17  -  - IL-1β, IL-6, IL-17A mRNA 
expression in retina↓*

-: not analyzed; ↓: decreased; ↔: not affected; *P < 0.05; p.o.: per oral; EAU: experimental autoimmune uveoretinitis; mRNA:messenger ribonucleic acid; IL: interleukin; TNF: tumor necrosis factor; Th: helper T-cell; Treg:regulatory T-cell.
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suppressive effect on the biological effects of IL-2 through 
the inhibition of the IL-2/IL-2R signalling pathway (81).

Upon closer examination of Table 3 and Table 4, it 
becomes apparent that there is a difference in the effect 
of EGCG on modulating Th2 cell differentiation. In 
a previous study conducted by Aktas et al (77), it was 
demonstrated that the expression of IL-4 was unaffected 
by the administration of EGCG (15 mg/kg per oral) to 
animal models with MS (Table 3). However, Bing et al 
(78) then reported that EGCG (50 mg/kg intraperitoneal) 
could significantly raise IL-4 expression in animal 
models with UC (Table 4). This difference may be 
attributed to several factors, including the difference in 
the dosage and administration of EGCG as well as the 
type of disease being studied. Moving further, previous 
investigations have highlighted that the balance of Treg/

Figure 1. Illustration of epigallocatechin gallate (EGCG) in modulating the 
balance of Th1, Th2, Th17, and Treg cells differentiation. The red arrow 
with a negative sign indicates that EGCG decreased the expression of 
the designated molecule, while a red arrow with a positive sign indicates 
that EGCG increased the expression of the designated molecule. APC: 
antigen-presenting cell; FOXP3: fork-head box P3; IL: interleukin; MHC: 
major histocompatibility complex; RORγt: retinoic acid-related orphan 
receptor gamma t; STAT: signal transducer and activator of transcription; 
TGF: transforming growth factor; TNF: tumor necrosis factor; Th: helper 
T-cell; Treg: regulatory T-cell; T-bet: T-box transcription factor TBX21; 
TCR: T-cell receptor; IFN: interferon.

Th17 cells differentiation plays a crucial role in attaining 
immunological tolerance and curing autoimmunity 
conditions. In light of this observation, it is noteworthy 
that TGF-β plays a dual role as a promoter cytokine for 
both Treg and Th17 cells. Consequently, the absence of 
IL-6 and the inactivation of IL-6/IL-6 receptors (IL-
6R) signalling are considered to be the limiting factors 
that promote TGF-β-induced Treg cell differentiation 
by reversing the IL-6-induced inhibition of Treg cell 
differentiation (2,50,83). Wang et al (50) clarified that 
this reversing effect is an essential mechanism of EGCG 
regulating the balance of Treg/Th17 cells differentiation 
rather than directly affecting FOXP3 activation, as the 
expression of SMAD2 and SMAD3 that regulate FOXP3 
activation was unaffected by EGCG administration (Table 
3) (50,70).

The explanation above gives a promising outlook and 
potential for EGCG to be considered as a complementary 
and alternative medicine for autoimmune disorders such 
as RA, MS, UC, and AU. The current treatment for these 
diseases is still associated with a significant occurrence 
of adverse effects and toxicity. The beneficial effect of 
EGCG in autoimmune disorders is attributed to its ability 
to modulate the balance of Th1 and Th17 versus T2 and 
Treg cell differentiation, which has been linked to the 
incidence and severity of the disease. Moreover, EGCG 
has demonstrated the ability to improve the clinical 
parameters of the animal being tested. Referring to the 
prior studies, EGCG can be proposed as a future medicine 
to treat (8,9,21,24,76,79) or prevent (4,50,77,79,80) the 
autoimmune disease. However, due to the limitations 
of previous research, we suggest undertaking continued 
exploration of EGCG on AU. This is because the current 
data shows an incomplete understanding of the clinical 
effect of EGCG on animal models with AU. According to 
the available report, EGCG could reduce the enlargement 
of major retinal vessel diameters and diminish the 
attenuated visual function of the EAU mouse, but it has 
not demonstrated the ability to improve the clinical score 
of EAU mouse (80). 

Moving further, it has been discovered that several 
clinical trials of EGCG have been conducted on patients 
with MS. In their study, Mähler et al (84) reported that 
EGCG could ameliorate muscle weakness and fatigue, 
which are prevalent symptoms of MS. This effect was 
observed through a significant reduction in postprandial 
energy expenditure, carbohydrate oxidation rates, adipose 
tissue perfusion, and glucose supply. However, the 
current trials are still unable to demonstrate the efficacy 
of EGCG in curing brain atrophy or hyperintense lesions 
in the brain, as well as radiologic and clinical parameters 
(85,86). This limited efficacy of EGCG in MS patients may 
be attributed to the inadequate stability of EGCG within 
the gastrointestinal system due to the intestinal pH and 
microflora (87-89).

The degradation of EGCG in the human ileal fluid, 
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which refers to the condition of the small intestine, results 
in the formation of gallic acid (GA) and EGC (Figure 
2) (88,90). In other terms, this degradation causes the 
elimination of the GA moiety in the EGCG structure, 
whereas the GA component plays a vital role in the 
antioxidative function of EGCG, which is thought to 
contribute to its ability to modulate the balance of CD+ 
T-cell subsets differentiation (9,21,91). In addition, there 
have been reports indicating that the GA moiety of EGCG 
enhances its antioxidant activity, thereby potentially 
augmenting its therapeutic effects in the management of 
MS. This is achieved through the prevention of N-methyl-
D-aspartate-induced injury to brain neurons and the 
direct inhibition of the formation of neurotoxic reactive 
oxygen species within these neurons (77). Furthermore, 
the GA moiety in the EGCG structure has been found to 
inhibit the conjugation of EGCG with other substances, 
hence preventing its degradation (91).

The stability of EGCG can be improved through 
structural modification or using nano-drug delivery 
systems. According to Dai et al (87), the modification of 
certain phenolic groups in EGCG through methylation, 
acylation, or glycosylation could significantly improve 
the stability and increase the absorption by up to 
ninefold. Moreover, this effort could also increase the 
molecular weight and the hydrophobicity of EGCG, 
thereby escalating the permeability to the blood-brain 
barrier, which will significantly enhance the benefit of 
EGCG in MS treatment (22,87,92). Furthermore, the 
foregoing research indicated that EGCG encapsulated 
in nanoparticles, nanoemulsion, nanoliposome, and 
nanophytosome as a drug delivery platform can increase 
stability and bioavailability, hence improving the efficacy 
of EGCG (87,93). These approaches can be applied to 
prospective research to improve the therapeutic effect of 
EGCG, especially in clinical trial scenarios.

Conclusion
To sum up, prior investigations have demonstrated that 
EGCG, the most biologically active component from 

Camellia sinensis, exhibits considerable promise as a 
complementary and alternative medicine for diverse 
autoimmune diseases through its ability to modulate 
the balance of Th and Treg cell differentiation. Given 
the inherent stability limitations of EGCG, it is expected 
that prospective investigations will focus on structural 
modifications and the development of a drug delivery 
platform utilising nanotechnology to mitigate its 
degradation.
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