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Implication for health policy/practice/research/medical education:
Renal drug efflux by p-glycoprotein has been a major hurdle in its bioavailability, which may be circumvented by screening for its 
natural reno-protective nontoxic inhibitors, viz., atisine, embelin, phylloquinone, or stigmasterol which may be synergistically 
administered with the treatment drugs to alleviate the disease.
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Introduction: Multidrug resistance (MDR) is primarily associated with reduced 
intracellular drug accumulation owing to overexpression of p-glycoprotein, an active efflux 
transporter. Competitive inhibition or allosteric modulation of p-glycoprotein may alter 
the pharmacokinetics of the drugs that serve as substrates, resulting in enhanced drug 
bioavailability and tissue penetration. This study endeavors to assess the efficacy of the 
components of reno-protective herbs in the inhibition of p-glycoprotein activity thereby 
enhancing the possibility of the retention of co-administered renal medications inside the 
target cells.
Methods: Drug-likeness and pharmacokinetic properties were determined to ensure the 
safety and efficacy of herbal constituents. Molecular docking employing the CDOCKER 
module of Discovery Studio was performed to investigate the binding affinity between the 
active constituents and the p-glycoprotein receptor (6C0V). Molecular dynamics simulation 
was utilized to further assess the stability of the complex of receptors with the component 
bearing its maximal affinity. 
Results: The analyses suggested that the inhibitors viz., atisine, kutkin, and embelin from 
Aconitum heterophyllum, phylloquinone from Calendula officinalis, stigmasterol from 
Paederia foetida, and convallamarogenin from Convallaria majalis demonstrated maximum 
binding affinity towards p-glycoprotein. 
Conclusion: Atisine may thus be identified as the lead compound in the augmentation of drug 
bioavailability inside the cell, along with its reno-protective efficacy.
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Introduction
Drug efflux transporters such as p-glycoprotein play a 
major role in the maintenance of cellular homeostasis 
and are primarily responsible for multidrug resistance 
(MDR). P-glycoprotein is ubiquitously expressed in the 
epithelial cells of the small intestine, liver, kidney, and 
endothelial cells of the blood-brain barrier to expel the 
toxic compounds but in the process also modulates the 
pharmacodynamics of the drugs. So, the identification 
and formulation of p-glycoprotein inhibitors, which when 
co-administered with such drugs, is a strategy that would 
enhance drug bioavailability inside the target cells (1).
The beneficial effects of medicinal plants on kidney 
dysfunction are often attributed to their antioxidant 

defense mechanisms with additive benefits on 
inflammation and fibrosis (2). Furthermore, some plants 
and their active metabolites are known to ameliorate 
kidney ailments such as interstitial nephritis, altered 
intraglomerular hemodynamics, and glomerulonephritis 
(3). These bioactive ingredients have functional scaffolds 
to revert p-glycoprotein-mediated MDR (4). The majority 
of renal drugs viz., cyclosporine (5), mycophenolate (6), 
tacrolimus (7), dapagliflozin (8), and valsartan (9) are 
substrates of p-glycoprotein and are thus effluxed by the 
cells.

Here, twenty-seven plants with renal proficiency viz., 
Sida rhombifolia (10), Apium leptophyllum (11), Aconitum 
heterophyllum (12), Abies webbiana (13), Artocarpus 
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hirsutus (14), Paederia foetida (15), Cocculus pendulus 
(16), Alangium salvifolium (17), Ruta graveolens (18), 
Calophyllum inophyllum (19), Rubia cordifolia (20), Myrtus 
communis (21), Pongamia pinnata (22), Convallaria 
majalis (23), Saussurea costus (24), Mimusops elengi 
(25), Calendula officinalis (26), Ficus bengalensis (27), 
Hypericum mysorense (28), Toona sinensis (29), Nelumbo 
nucifera (30), Chelidonium majus (31), Eclipta alba (32), 
Alstonia scholaris (33), Pterocarpus marsupium (34), 
Centella asiatica (35), and Plumbago zeylanica (36) have 
been chosen to screen their inhibitory binding efficacy 
with the efflux transporter by molecular docking. This 
study will help in the identification of reno-protective 
natural compounds as p-glycoprotein inhibitors, which 
in addition possess the ability to enhance the absorption 
of renal treatment substrate drugs inside the efflux-prone 
target cell.

Materials and Methods
Protein preparation
The 3D crystal structure of p-glycoprotein (PDB code: 
6C0V) used for the docking evaluation was downloaded 
from the protein data bank (http://www.rcsb.org) 
at a resolution of about 3.4 Å (37). The protein was 
energetically minimized using the protein preparation 
wizard of Discovery Studio. This involved the cleaning 
of protein and optimization of side-chain conformations 
using the ChiRotor algorithm. The potential binding 
pockets were detected using Dogsitescorer server (https://
proteins.plus/#dogsite). 

Ligand preparation
3D structures and canonical smiles of 376 ligand molecules 
(Table S1) and control drugs doxycycline and elacridar, 
were obtained for molecular docking from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/), chEMBL (https://
www.ebi.ac.uk/chembl/), and ChemSpider (http://www.
chemspider.com/) databases. The canonical SMILES were 
translated into SDF files employing the online SMILE 
translator (https://cactus.nci.nih.gov/translate/). The 
prepare ligands protocol of discovery studio was used 
to perform tasks such as the removal of duplicates and 
computing isomers and tautomers.

Drug likeness and ADMET analysis
Druggability of the components were examined with 
Molinspiration tool (http://www.molinspiration.com). 
Pharmacokinetic study was performed with the pkCSM 
tool to examine the ADMET (Absorption, Distribution, 
Metabolism, Excretion, and Toxicity) property of the 
small molecules (http://biosig.unimelb.edu.au/pkcsm/
prediction).

Molecular docking analysis
The receptor-ligand docking evaluation was performed 
by the CDOCKER module of Discovery Studio (version 

2019 onwards) which is based on CHARMm-based 
docking algorithm. The ligands were flexed with the rigid 
receptor during the refinement and high-temperature 
dynamics generated random ligand conformations which 
were refined by grid-based (GRID1) simulated annealing 
and forcefield minimization. A set of refined ligand poses 
for each component was generated and the best pose was 
selected on the basis of the lowest binding free energy. 

The design of the experiment was aimed towards a 
ligand-based approach, thus allowing the incorporation of 
all the binding poses for all the ligands used in the study. 
This maximized the pool of proposed hits which could 
develop into lead compounds.

Molecular dynamics simulation 
The top-scoring conformation identified through 
docking analyses was used for molecular dynamics (MD) 
simulation. The ligand-receptor complex was subjected to 
CHARMm36 force-field and the solvation was performed 
under Explicit Periodic Boundary conditions. The system 
was relaxed by two rounds of energy minimization (500 
steps of steepest descent and 500 steps of conjugate 
gradient) with the final RMS gradient of 0.1. The 
temperature of the system was raised from 50 K to 300 
K (heating) for 4ps and equilibration was performed for 
10ps. The simulation (production) was executed for 10ps 
with a time step of 2fs at a constant temperature of 300 
K. The electrostatic calculation was set to particle mesh 
Ewald (PME) and Verlet leapfrog integrator (LEAP) was 
used to perform numerical integration of the equation of 
motion. The analyze trajectory protocol was employed 
to calculate geometric properties such as distance, angle, 
torsion, and the number of non-bond interactions for 
each simulation frame. Root mean square fluctuation 
(RMSF) from the average structure in the trajectory and 
interaction energy between two sets of atoms were also 
computed. The stability of the conformation was assessed 
through binding free energy calculation using Poisson-
Boltzmann with non-polar surface area (PBSA) method 
and radius of gyration (Rg).

Results
A total of 376 components of 27 reno-protective herbs were 
initially screened on the basis of druggability and ADMET 
properties. These were then docked against outward facing 
p-glycoprotein transporter, 6C0V. Considering substrate 
expulsion from an inward V-shaped transmembrane 
receptor, the outward-facing conformation is necessary 
for the study of the more exposed inhibitor-binding 
and substrate-binding domains. P-glycoprotein uses the 
energy from ATP hydrolysis to extrude drug substrates 
out of the cell, locking it in outward V conformation when 
another ATP hydrolysis reverses it to the unbound inward 
V conformation.

Drug-likeness
Drug-likeness result was computed based on Lipinski’s 
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rule of five (38), which showed that 331 compounds had 
acceptable drug-like properties indicating a good oral 
bioavailability (Table 1). 

ADMET prediction 
The ADMET properties were computed using pkCSM 
revealing that 39 components served as p-glycoprotein 
inhibitors and their ADMET values were within an 
acceptable range (Table 2). ADMET features affect oral 
bioavailability and metabolism of small molecules (39).

Molecular docking analysis
To understand the binding interaction of herbal 
components with p-glycoprotein, molecular docking 
analysis was conducted using Discovery Studio. 
The p-glycoprotein inhibitors were sequentially 
analyzed in order of their best (maximally negative) 
binding energy viz., atisine, kutkin, phylloquinone, 
embelin, stigmasterol, convallamarogenin, spinasterol, 
furostanol, dehydrocostus–lactone, β-sitosterol, amyrin 
acetate, 4-alpha-Methylcholesta-8,24-dien-3beta-ol 
(4AMC), lanosterol, erythrodiol, D-friedoolean-14-
en-3-one, 6-acetonyldihydrochelerythrine, lupeol, 
verazine, protopine, nuciferine, dihydrosanguinarine, 

cadiyenol, picrinine, 1H-Indole-2,3-dione, 5-pentyl-
1-(tr imethylsi ly l)- ,3-(O-methyloxime)(1H-ID), 
maritinone, 6-acetonyldihydroavicine, azadirone,1,2,4-
Cyclopentanetrione,3,3-bis(3-methyl-2-butenyl)-5-(3-
methyl-1-oxobutyl) (1,2,4-CPT), β-amyrin, epifriedelinol, 
taraxerol, lyoniresinol, taraxasterol, alschomine, 
adenanthin, and podophyllotoxin. 

The binding energy parameter is one of the most 
established parameters for evaluating of docking 
complexes, specifically, protein-small molecule complexes. 
Since the calculation of binding energy is dependent 
on the interacting partners, it is difficult to predict an 
optimum threshold value that can be used as a reference 
standard universally as the interactions vary based on 
the partners. The established inhibitors of p-glycoprotein 
have been used and the binding energies obtained in those 
interactions have been used to construct the reference 
range to evaluate the efficacy of the other molecules that 
have been analyzed.

The lowest binding energy of interaction was observed to 
be with atisine (-100.76 kcal/mol) and kutkin (-90.8 kcal/
mol), components present in A. heterophyllum, followed 
by phylloquinone (-83.13 kcal/mol), a component present 
in C. officinalis (Figure 1).

Table 1. Drug-likeness properties of potential inhibitors

Compounds MW LogP nOHNH nON nViolations 

Atisine 343.51 3.67 1 3 0
Kutkin 460.44 1.07 4 10 0

Phylloquinone 450.71 8.80 0 2 1

Embelin 294.39 4.62 2 4 0

Stigmasterol 412.70 7.87 1 1 1

Convallamarogenin 430.63 5.04 2 4 1

Spinasterol 412.70 7.87 1 1 1

Furostanol 402.66 6.96 1 2 1

Dehydrocostus lactone 230.31 2.29 0 2 0
Βeta-sitosterol 414.72 8.62 1 1 1

MW: Molecular weight; LogP: Log of octanol/water partition coefficient; nON: Number of hydrogen bond acceptors; nOHNH: Number of hydrogen 
bond donors; nViolations: Number of rule of five violations.

Table 2. Absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of potential inhibitors

Compounds Water solubility 
(log mol/L)

CYP P450 2D6 
inhibition

Intestinal absorption (% 
absorbed)

BBB permeability 
(log BB)

Fraction 
unbound (Fu)

P-glycoprotein I 
inhibitor

Atisine -3.096 Yes 91.762 -0.102 0.322 Yes

Kutkin -3.639 No 65.029 -1.323 0.1 Yes

Phylloquinone -6.911 No 96.834 -0.281 0 Yes

Embelin -4.511 Yes 89.155 -0.06 0.232 Yes

Stigmasterol -6.682 No 94.97 0.771 0 Yes

Convallamarogenin -5.23 No 96.482 -0.227 0.02 Yes

Spinasterol -6.682 No 94.97 0.771 0 Yes

Furostanol -5.196 No 99.657 0.721 0 Yes

Dehydrocostus lactone -3.846 No 98.917 0.566 0.268 Yes

Βeta-sitosterol -6.773 No 94.464 0.781 0 Yes
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To assess the selectivity and strength of the receptor-
ligand interactions, the hydrogen bonds, and hydrophobic 
interactions were computed. The analyzed inhibitory 
components in order of their maximum hydrogen 
bonded interactions were found to be lyoniresinol, 
podophyllotoxin, alschomine, atisine, embelin, 
convallamarogenin, nuciferine, protopine, erythrodiol, 
picrinine, 6-acetonyldihydroavicine, phylloquinone, 
1H-Indole-2,3-dione, 5-pentyl-1-(trimethylsilyl)-,3-(O-
methyloxime)(1H-ID), 1,2,4-cyclopentanetrione,3,3-
bis(3-methyl-2-butenyl)-5-(3-methyl-1-oxobutyl)(1,2,4-
CPT), dehydrocostus–lactone, 4alpha-Methylcholesta-
8,24-dien-3beta-ol (4AMC), cadiyenol, maritinone, 
verazine, spinasterol, and furostanol. Maximal hydrogen 
bond interactions observed was four, as found in the case 
of lyoniresinol from Toona sinensis. Atisine, a component 
present in A. heterophyllum displayed two hydrogen bond 
interactions (Figure 2).

The analyzed inhibitory components in order of 
their maximum hydrophobic interactions were found 
to be epifriedelinol, friedelanol, amyrin acetate, 
β-sitosterol, convallamarogenin, D-friedoolean-14-
en-3-one, cadiyenol, maritinone, taraxerol, furostanol, 
1,2,4-cyclopentanetrione,3,3-bis(3-methyl-2-butenyl)-
5-(3-methyl-1-oxobutyl)(1,2,4-CPT), erythrodiol, 
phylloquinone, spinasterol, 4alpha-Methylcholesta-
8,24-dien-3beta-ol (4AMC), verazine, picrinine, 
dihydrosanguinarine, alschomine, dehydrocostus–lactone, 
protopine, β-amyrin, 6-acetonyldihydrochelerythrine, 

azadirone, atisine, kutkin, 1H-indole-2,3-dione, 
5-pentyl-1-(trimethylsilyl)-,3-(o-methyloxime)(1H-ID), 
taraxasterol, lyoniresinol, podophyllotoxin, stigmasterol, 
lupeol, nuciferine, adenanthin, embelin, and lanosterol. 
Maximal hydrophobic interaction detected was 10 in 
epifriedelinol and friedelanol from Paederia foetida and 
Ficus bengalensis, respectively. Atisine, a component 
present in A. heterophyllum displayed 6 hydrophobic 
interactions (Figure S1).
Molecular docking with Discovery Studio (version 2019 
onwards) showed that atisine, kutkin, and phylloquinone 
might serve as the best inhibitors of the efflux transporter. 
For p-glycoprotein and atisine interaction, two hydrogen 
bonds were identified with amino acid residues SER979, 
GLU972, and six hydrophobic (alkyl and pi-alkyl) 
interactions were observed with PHE72, PHE336, 
LEU332, LEU975, LEU976, and ILE736. Kutkin, on the 
other hand, showed six hydrophobic interactions (pi-alkyl, 
pi-pi T-shaped, pi-pi stacked, and pi-sigma) with PHE336, 
PHE732, PHE72, LEU975, LEU976, ILE736 at the distance 
of 5.14 A°, 3.41 A°, 2.83 A°, 5.44 A°, 5.16 A°, and 5.21 A°, 
respectively. Phylloquinone was involved in one hydrogen 
bond interaction with LEU332 at the distance of 2.56 A° 
and eight hydrophobic (pi-pi T-shaped, pi-pi stacked, 
pi-alkyl, and alkyl) interactions with PHE72, PHE336, 
PHE732, LEU332, LEU339, LEU975, LEU976, and ILE736 
at the distance of 4.43 A°, 5.37 A°, 4.14 A°, 3.41 A°, 5.45 
A°, 5.17 A°, 5.43 A°, and 4.71 A°, respectively (Figure 3). 
Atisine was found to be the best compound among the 376 
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Figure 1. Binding energy of interaction of inhibitory components in reno-protective herbs viz., (A) Calophyllum inophyllum; (B) Pongamia pinnata; (C) Toona 
sinensis; (D) Alstonia scholaris; (E) Hypericum mysorense; (F) Plumbago zeylanica; (G) Mimusops elengi; (H) Centella asiatica; (I) Chelidonium majus; 
(J) Nelumbo nucifera; (K) Ficus bengalensis; (L) Eclipta alba; (M) Pterocarpus marsupium; (N) Paederia foetida; (O) Calendula officinalis; (P) Cocculus 
pendulus; (Q) Abies webbiana; (R) Saussurea costus; (S) Apium leptophyllum; (T) Convallaria majalis; (U) Aconitum heterophyllum with doxycycline and 
elacridar as control.
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components studied, largely based on binding free energy, 
along with hydrogen and hydrophobic interactions.

Molecular dynamics simulation
The MD simulation study was conducted using Discovery 
Studio to predict the efficacy of atisine as possible 
novel inhibitor. The best pose was obtained from the 
molecular docking experiment by CDOCKER. The 
Standard Dynamics Cascade (SDC) performed a series 
of minimization and equilibration steps followed by 
molecular dynamics using CHARMm algorithm. SDC 
summary was acquired from minimization with the 
steepest descent and conjugate gradient, followed by 
heating, equilibration and production dynamics. The 
total energy was found to decrease and the temperature 
was stable at 301°K±4.

The stability of the conformation was evaluated by a root 
mean square fluctuation (RMSF) graph. These values were 
computed to evaluate the effect of the binding of ligands 
on protein flexibility. The RMSF of a structure is the time 
average of the RMSD. RMSD quantifies the divergence of 
a structure from a reference over time while the RSMF 
can reveal which areas of the system are the most mobile. 
Though RMSD is frequently calculated to an initial 
state, the RMSF is calculated to an average structure of 
the simulation. An area of the structure with high RMSF 
values frequently diverges from the average, indicating 
high mobility. Thus, RMSF evaluates the binding poses 
effectively. In Figure 4, the RMSF graph shows that the 
structure is not much fluctuating. The key residues viz., 
SER979, GLU972, LEU332, PHE336, PHE732, LEU975, 
LEU976, and ILE736 involved in various interactions 

were found without any abnormal fluctuation and had 
relatively low RMSF values (0.3-0.6 A°). These findings 
suggest that the critical interactions of the ligand in the 
binding pocket might maintain protein stability.

Figure 5 depicts the nature of the binding surface of 
the protein. The hydrogen bonds are shown by dashed 
lines. From the figure it can be concluded that one part 
of the inner pocket is slightly electronegative (Figure 
5a) indicated by the small red segment at the base of the 
surface representation; this can have a positive impact 
on transient interactions as documented by Pocketome 
data (40) and acidic (Figure 5e) with a predominance 
of aromatic residues predominating the core and outer 
extremities of the pocket (Figure 5b). The binding surface 
is filled with aromatic residues which contribute to edge 
interaction and hydrophobicity (Figure 5d). Aromatic 
stacking has long been recognized as one of the key 
constituents of ligand-protein interfaces and thus this 
predominance of aromatic residues indicates that the 
ligand has found a good fit in the protein neighborhood 
(41). Several hydrogen bond acceptors and two donors 
are clearly visible around the bound ligand (Figure 5c). 
H-bonds are crucial for binding and specificity and other 
interactions make the structure stable and compact. In 
biological systems, it has been observed that H-bond 
competing process is always present with water. Since 
bulk water interferes with reversible biological processes, 
enthalpy-entropy compensation occurs during H-bond 
formation (42). In this study we found that hydrogen 
bonding was present due to the presence of residues 
which were potentially hydrophobic in nature and thus 
this interference was not present here.

Figure 2. Number of hydrogen bonds of inhibitory components in reno-protective herbs viz., (A) Toona sinensis; (B) Alstonia scholaris; (C) Aconitum 
heterophyllum; (D) Convallaria majalis; (E) Nelumbo nucifera; (F) Chelidonium majus; (G) Calendula officinalis; (H) Hypericum mysorense; (I) Saussurea 
costus; (J) Cocculus pendulus; (K) Centella asiatica; (L) Plumbago zeylanica; (M) Eclipta alba; (N) Mimusops elengi; (O) Ficus bengalensis; (P) Calophyllum 
inophyllum; (Q) Pongamia pinnata; (R) Apium leptophyllum; (S) Paederia foetida; (T) Pterocarpus marsupium; (U) Abies webbiana with doxycycline and 
elacridar as control. 
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The interaction energy was calculated between sets of 
atoms across all conformations using CHARMm and was 
found to be stable. The radius of gyration (Rg) of a protein 
is computed as the average distance of all atoms to its 
geometric center: Rg = (Σr 2)1/2 /N, where r is the distance 
between an atom and the geometric center and N is the 
total number of atoms. The radius of gyration is stable 
around 47.95 Å which shows that the complex structure 
was compact during simulation.

MM-PBSA method was used to calculate the binding 
free energy of p-glycoprotein-atisine complex. The 
binding energy of the protein with the ligand (Gbinding) was 
calculated for each frame using equation: Gbinding = G(a) 
- G(b) - G(c) where, G(a) is the free energy of the protein-
ligand complex and G(b) and G(c) are free energies of 
the protein and ligand, respectively. Then, the average 
of Gbinding was calculated over all frames and reported as 
the DeltaG Average. Average binding free energy (DeltaG 
Average) was found to be -19.7126 kcal/mol (Table 3). 
The results of this simulation study showed the stability 
of the protein-ligand complex and suggested that atisine 
could likely inhibit p-glycoprotein better than kutkin and 
phylloquinone. 

Discussion
Renal drugs would be partially excreted from the target 
cells owing to overexpression of the efflux transporter 

Figure 3. 2D (Left) and 3D (Right) binding poses of inhibitors: Atisine 
(A-B), phylloquinone (C-D) and kutkin (E-F) with human p-glycoprotein 
(6C0V). Graphics were generated by CDOCKER.

Figure 4. Root-mean-square-fluctuation (RMSF) graph depicting the 
fluctuation of the residues compared to the average structure across the 
production trajectory during molecular dynamics simulation.

Figure 5. Pocket view of 3D representation of molecular interaction between 
human p-glycoprotein (6C0V) and atisine: a) binding surface depicting 
interpolated charge; b) binding surface depicting aromatic residues; c) 
binding surface and the representation of residues involved in hydrogen 
bond donor and acceptor; d) hydrophobicity surface representation, and e) 
ionizability surface representation of p-glycoprotein-atisine complex.

p-glycoprotein. Inhibiting the expulsion by p-glycoprotein 
would enhance the bioavailability of the desired drugs as 
there would be retention in the reno-cytes.

Herbal constituents are known to modulate 
p-glycoprotein activity by directly interacting with the ATP-
binding site or the substrate-binding site. Inhibition of the 
efflux of rhodamine 123 in the MDR human leukaemia cell 
line by stigmasterol (43) (Paederia foetida), the reversion 
of MDR in NCI/ADR-RES cells by β-Sitosterol (44) (Abies 
webbiana), inhibition of p-glycoprotein mediated efflux 
of [3H]digoxin in LLCGA5-COL150 cells by lupeol (45) 
(C. officinalis), and p-glycoprotein inhibition in cultured 
bovine brain capillary endothelial cells by berberine (46) 
(A. heterophyllum) suggest the potency of the bioactive 
compounds in modulation of p-glycoprotein activity.

Herbal compounds have long been known to promote 
renal function and slow down the progression of kidney 
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disease (47). Berberine (A. heterophyllum) has been 
known to exert reno-protection against gentamicin-
induced nephrotoxicity in rats through the attenuation 
of oxidative stress, apoptosis, and mitochondrial 
dysfunction (48). Similar reno-conservation effect was 
observed on the administration of β-sitosterol (Paederia 
foetida) in nephrotoxicity induced in Wistar rats via the 
up-regulation of Nrf2 gene expression (49). Nuciferine 
from Nelumbo nucifera improved renal injury by the 
inhibition of TLR4/PI3K/NF-κB signaling pathway and 
NLRP3 inflammasome activation in rat renal cortex and 
HK-2 cells (50). So, the simultaneous administration of 
these natural compounds would not only enhance the 
accumulation of the renal treatment drugs inside the 
target cells but also impart additional reno-protection.

The inhibitors of the efflux carrier protein may be 
sequentially aligned on the basis of their magnitude 
of negative binding free energy along with hydrogen 
bonding and hydrophobic interactions, all of which play 
vital roles in stabilizing the appropriate conformation 
of the ligand at the target site of the protein. Hydrogen 
bonding provides directionality and specificity of 
interaction between the receptor and ligand. The 
energetics and kinetics of hydrogen bonding need to be 
optimal thus conferring stability to the protein structure 
(51). Optimized hydrophobic interactions stabilize the 
energetically-favored inhibitor ligands at the active sites 
of the protein and may help alter binding affinity and 
improve drug efficacy by enhancing the bioavailability in 
the renal cells.

Doxycycline (52) and elacridar (53) are established 
inhibitors of p-glycoprotein. Atisine possessed binding 
energy of -100.76 kcal/mol exceeding the binding energy 
attained with doxycycline (-79.09 kcal/mol) and elacridar 
(-91.59 Kcal/mol). Doxycycline was involved in one 
hydrogen bond (carbon–hydrogen) with LEU976 (3.74 Å) 
and three hydrophobic interactions (pi-alkyl, alkyl and pi-
pi stacked) with residues LEU332 (3.96 Å), ILE736 (4.52 
Å) and PHE732 (4.63 Å) at the same binding position. 
Elacridar was engaged in hydrophobic interactions (one 
pi-pi stacked, two pi-alkyl, two alkyl) with five residues 
including PHE732 (5.38 Å), PHE72 (6.80 Å), LEU332 
(6.42 Å), ILE328 (5.76 Å), and ALA80 (5.84 Å). Atisine 

exhibited better binding mode with two hydrogen bond 
interactions (conventional and carbon–hydrogen) with 
amino acid residues SER979 (2.28 Å), GLU972 (2.67 Å) 
and hydrophobic (alkyl and pi-alkyl) interactions with 
six residues, including PHE72 (4.41 Å), PHE336 (4.22 
Å), LEU332 (4.99 Å), LEU975 (4.78 Å), LEU976 (5.28 Å), 
and ILE736 (4.46 Å). Thus, atisine, a non-toxic (54) active 
constituent of A. heterophyllum with its better binding 
affinity and stronger interactions than doxycycline and 
elacridar, maybe considered as the lead compound in 
circumvention of p-glycoprotein mediated renal drug 
efflux.

Conclusion
The renoprotective natural compounds which are 
considered as p-glycoprotein inhibitors, exhibit drug-
likeness and other pharmacokinetic attributes. The 
binding potency of these potential lead compounds 
promises increased drug bioavailability when co-
administered during medical treatment. Hence, atisine 
is the lead inhibitory component, followed by kutkin 
and phylloquinone as analyzed from an array of reno-
protective herbs which might play significant role in 
circumvention of drug efflux along with augmentation 
of renal function. Further in vitro and in vivo studies are 
needed to accredit the pharmacological significance of 
these lead molecules.
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Table 3. Radius of gyration, interaction energy and binding free energy of all conformations during molecular dynamics simulation

Time Radius of 
Gyration (Å)

VDW 
Interaction 
Energy

Electrostatic 
Interaction 
Energy

Interaction 
Energy

G_6C0V_
complex

G_6C0V:
B_2

G_not_
6C0V: B_2

DeltaG_
6C0V

Conformation 1 16 47.8989 -95.0946 -40.0492 -55.0454 -49739.6 89.0716 -49819.1 -9.5943

Conformation 2 18 47.8655 -81.6751 -41.0953 -40.5798 -49802.3 79.5228 -49868 -13.8354

Conformation 3 20 47.9521 -79.175 -38.1688 -41.0063 -49716.5 80.3239 -49788.5 -8.2759

Conformation 4 22 47.9502 -87.3181 -36.3652 -50.9529 -49896.5 80.6089 -49944.2 -32.9192

Conformation 5 24 47.934 -103.996 -39.0754 -64.9206 -49785 84.5502 -49835.6 -33.9383
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