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Implication for health policy/practice/research/medical education:
The study demonstrates that multi-component herbal preparation paradigms should be revisited to prepare health and medical 
students for future multidisciplinary teamwork. In the industrial sector, integrating coworking action in herbal formulations 
is essential to establish a solid foundation for advancing herbal product development, particularly for comprehensive herbal 
component standardization.
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Over the past two decades, the secondary metabolite platform has determined the scientific 
direction of herbal medicines, while plant sources have been assumed to be the object of 
lead discoveries through bioassay-guided fractionation efforts. Nonetheless, the majority 
of purification programs have resulted in fractions and pure compounds with much lower 
efficacy than their parent extracts. It is then assumed that co-working action modes among 
chemical constituents occur in the herbal preparations. Primary metabolites (polysaccharides, 
peptides, and fatty acids) and mineral groups, on the other hand, have been neglected in 
the herbal effect contributions. This review aims to understand the interplay of secondary 
metabolites in herbal preparations, particularly how they interact with primary metabolites 
and mineral groups. Thus, by adhering to classical methods, it is possible to address certain 
aspects that modern standardization lacks, thereby facilitating a more comprehensive 
approach to these issues.
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A B S T R A C T

Introduction
Throughout the course of history, herbal medicines 
have garnered recognition for their esteemed status as 
substances that promote and maintain human health 
throughout many societies. Indeed, the initiation of the 
drug discovery process has been the isolation of natural 
chemicals obtained from plants. Notable examples 
include the extraction of morphine for its pain-relieving 
properties. Subsequently, this approach has led to the 
discovery of various drugs with anticancer properties 
such as taxol, camptothecin, vincristine, and vinblastine. 
Additionally, cardiotonic digoxin, anti-malarial agents 

like artemisinin and quinines, and anti-Alzheimer’s 
medications such as galanthamine have also been 
derived from natural compounds (1,2). However, there 
has been a noticeable cessation in the development of 
novel pharmaceuticals derived from plants during the 
last twenty years. Subsequently, a significant proportion 
of natural drug discovery initiatives have transitioned 
towards using microbial or marine screening sources 
(3-5). Conversely, in the contemporary era of evidence-
based medicine, herbal extract preparations have been 
categorized as complementary alternative medicines, 
specifically designed as preventative and promotional 
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agents, owing to their uncertain outcomes. Some official 
authorities have provided herbal pharmacopoeias 
with comprehensive monograph outlines that include 
information on botanicals, secondary metabolite profiling, 
and contaminant threshold requirements, which align 
with the modern chemical-pharmacological paradigm. 
Since the uncertainty of outcomes has been mitigated 
through qualitative and quantitative analysis of chemical 
constituents, the main mission of these official documents 
is to focus on the safety of herbal preparations. The idea 
that certain isolated compounds from plants exhibit 
biological effects and have already been used in clinical 
therapy has led to the modernization of herbal medicine, 
especially in the use of the term specific standardization 
(6,7). 

A number of major compounds in plant extracts 
could be the active principal constituents, such as 
hydroxycinnamic acid derivatives in Sarcocaulon marlothii 
stem (8), andrographolide in Andrographis paniculata leaf 
(9), 1’-acetoxychavicol acetate in Alpinia galanga rhizome 
(10), linalool in Coriandrum sativum fruit (11), xylaranic 
acid in Xylaria primorskensis (12), and hyperforin in 
Hypericum perforatum herb (13). The vast majority of 
perpetual bioassay-guided fractionation work has been 
aimed at discovering active compounds from crude 
materials. Technically, bioassay-guided fractionation 
is used to link drug discovery screening with biological 
responses mediated by an instrument analysis. It is done 
step by step from crude extract to purified materials (14). 
Unfortunately, numerous studies employing bioassay-
guided fractionation have yielded bioactivity effects that 
are statistically insignificant for the isolated compounds 
when compared to their original extracts (15-17). In certain 
cases, these isolated compounds have even demonstrated 
lower effects (18-20), or no effects at all (21,22). Moreover, 
with regards to effectiveness, the primary active chemicals 
are frequently discovered in limited concentrations. 
There is not always a clear link between the amount of 
these compounds in the active parent extracts and their 
biological effects (23). The aforementioned concerns 
have been brought to attention through many findings 
on bioassay-guided fractionation, indicating the potential 
limitations of depending exclusively on certain chemicals 
as the main active metabolite (24-27). This review aimed 
to elucidate the current mainstream standardization of 
herbal medicinal preparations that may have deviated from 
the basic pharmacological theory. Further, it provides an 
evaluation of certain classical standardization methods as 
an alternative to address the limitations of some claimed 
comprehensive standardization methods.

Coworking mode of actions 
Synergistic interaction
The first form of coworking mode of action is synergistic 
interaction, wherein the combination of two natural 

compounds yields effects greater than the cumulative 
responses elicited by each substance when administered 
individually (the general formula of 1+1 >2). The concept 
of pure synergism pertains to the phenomenon in which 
the presence of a non-active metabolite contributes 
to the augmentation or modulation of the effects of 
an active molecule. As recently revealed by Vidar et al 
(28), berberine antibacterial effect was enhanced by the 
presence of piperine. On the contrary, piperine itself did 
not have any antibacterial activity. Previously, Bilia et al 
(29) revealed that the antiplasmodial effect of artemisinin 
was enhanced by the presence of quercetin in certain 
ratios. Nevertheless, in vivo or clinical synergistic data 
should also be considered since Elfawal et al (30) and 
Cai et al (31) reported that some flavonoids inhibited 
P450 cytochromic metabolism of artemisinin and 
increased blood artemisinin concentration. Thus, in the 
context of non-pure synergy, the presence of a less active 
molecule enhances the effects of an active metabolite. The 
aforementioned phenomena have been elucidated by the 
utilization of in vitro antioxidant assays conducted on 
some polyphenols (32-34). 

Additive interaction
The second proposed coworking modes is characterized 
by additive interaction, in which some compounds within 
mixtures have a shared action target. The observed 
quantitative effects arise from the aggregation of the 
individual effects of the compounds when they are given 
independently (follows the basic formula of 1 + 1 with 
approximate result of 2).

However, the additive mode is typically avoided in the 
clinical settings because of the possibility of unfavorable 
adverse outcomes (35,36). The published data on the 
interaction among natural compounds through pure 
additive mechanism, resulting from the combination 
among partial agonists, is quite scarce. Therefore, the 
explanation for additive mechanism could be approached 
by referring to the in vitro assay models such as antioxidant 
assays. As described by Heo et al in their endeavor to 
unveil the synergistic effects among phenolic catechin, 
chlorogenic acid, cyanidin, cyanidin 3-glucoside, 
cyanidin 3-rutinoside, epicatechin, peonidin, peonidin 
3-glucoside, quercetin, quercetin 3-glucoside, quercetin 
3-galactoside, and quercetin 3-rutinoside through ABTS 
(2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 
assay method, they reported that the individual capacity of 
these phenolic compounds was similar to the summation 
of their combination effects (37). Hence, there was additive 
instead of synergistic effect among their combinations. 
Additionally, Palafox-Carlos et al examined the radical 
scavenge capacity (RSA) of polyphenol vanillic acid (A), 
protocatechuic acid (B), and chlorogenic acid (C) using 
2,2-diphenyl-1-picrylhydrazy (DPPH) assay, resulting 
in RSAs of 5.6%, 17.30%, and 13.56%, respectively 
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(32). Meanwhile, the combination of the latter with the 
polyphenol showed 23.7% (B+A) and 20.4% (C+A) 
inhibition, respectively (32). Not only in those chemical 
constituents, but the additive mode has also been proven 
by the antioxidant assays in binary and ternary fruit extract 
combinations based on FRAP (ferric reducing antioxidant 
power), DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), 
and ORAC (oxygen radical absorbance capacity) assays 
(38). The addition of antioxidant capacities of individual 
phenolic compounds led to a total antioxidant capacity 
that exhibited an effect consistent with their summations 
from individual components, correlating with an additive 
action mode. Therefore, instead of relying on limited 
compounds as the principal active compound, it should 
be more logical to assume that there is probably a large 
orchestral mechanism among chemical constituents in 
plant material working on this target, which produces 
additive interactions (39). Hence, considering gradual 
effect as the main priority based on the bioassay-guided 
fractionation model must be reevaluated as the standard 
for finding pharmaceutical active materials. From an 
economic point of view, leveraging crude extracts for 
pharmaceutical dosage forms is more economical than 
the use of their fractions or purified compounds (40,41). 

The role of aqueous extracts
In term of solvent choice, several investigations have shown 
that aqueous extracts from certain plant species display 
more pronounced activity compared to those obtained 
using organic solvents (42-47). A considerable amount 
of glycoside derivatives of secondary metabolites can be 
identified in aqueous extracts (48,49). However, these 
aqueous extracts mainly consist of primary metabolites, 
including peptides, carbohydrates, and certain inorganic 
compounds. In this regard, traditional preparation 
techniques for herbal medicine include decoction, boiling 
of dried plants, or expression of fresh material, which 
may attract predominantly primary instead of solely 
secondary metabolite groups (50,51). In fact, throughout 
history, long before the discovery of organic solvents for 
extraction, it has been widely recognized that traditional 
preparations involved extracting essential components 
from fresh herbs parts through methods such as juicing 
of fresh plant materials (52) or the utilization of plant 
materials in the form of decoctions or infusions with water 
(53,54). Therefore, it is plausible that the effectiveness of 
traditional infusion or decoction preparations arises from 
the interaction of primary and secondary metabolites, 
rather than from the effects of secondary metabolites 
alone. 

Primary and secondary metabolites
Unfortunately, the majority of research papers 
predominantly have been focusing on the toxic aspects of 
metals and minerals in herbal products (55-57), leading 

to a scarcity of reports on the bioactivity of these minerals 
and trace elements in phytomedicine. However, the 
long-term consumption of these materials, particularly 
those present in herbal teas such as Al, Ba, Fe, Zn, Mn, 
Mg, K, Na, P, Cu, Sr, and Ca has been fundamentally 
acknowledged as playing a crucial role in human growth 
and overall health (58,59). Furthermore, some of these 
elements are vitally important for various preventive and 
promotive health states in human body (60,61). It is also 
widely recognized that minerals, when present in low 
concentrations, are soluble in water and may coexist with 
secondary or primary metabolites in traditional infusions 
or decoctions. Zhang et al reported that a synergistic 
effect occurs between Zn, Ca, Mn and flavonoids from 
Epimedium koreanum extract, which stimulates primary 
osteoblast by enhancing alkaline phosphatase activity 
(62). The combination of green tea extract containing 
rich polyphenols with Se, Cu, Mn and some amino acids 
demonstrated a significant inhibition of the growth of 
many cancer cell models (63,64). Trace elements such as 
Zn, Fe, and Cu, which are found in Morus alba extract (65), 
along with Cr and Mg in Origanum grosii leaf extract, are 
suggested to exhibit a synergistic antihyperglycemic effect 
when combined with the secondary metabolites present 
in these extracts (66). Biel et al reported that with varying 
content of Zn, Fe, Cr, and Mn in Cynara scolymus leaf 
extract, when interacting with a high polyphenol content 
and fixed carbohydrates, fats, and proteins, may contribute 
to the prevention of chronic non-communicable diseases, 
through protection from oxidative damage mechanism 
(67). Regarding the role of primary metabolites, 
particularly polysaccharide, Cho et al reported that a 
3:1 combination of glucan polymer from Aureobasidium 
pullulans and Textoria morbifera in ovariectomized mice 
exhibit the strongest anti-osteoporotic effect (68). The 
combination of selenium with natural polyphenols, such 
as resveratrol (69,70) and chlorogenic acid (71) has been 
revealed to inhibit metal-induced Aβ aggregation involved 
in the development of Alzheimer’s disease. Therefore, 
both secondary and primary metabolites may exert a 
potentially significant impact on various pathological 
conditions, particularly in the form of decoctions and 
infusions (68,72-74). Therefore, depending on the linked 
pharmacology class, it is urgent to provide the mineral 
and trace element profiles in herbal preparations, too. 
A summary of possible coworking action modes among 
secondary, primary, complex mixtures, and minerals is 
presented in Table 1.

Putative modeling of the pharmacological mechanisms 
of herbal preparations
Based upon those bioactivity mode overviews, relying 
on conventional pharmacological concepts, “one active 
compound toward one target” apparently is inappropriate 
to be applied to herbal preparations. To bridge the gap, 
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Table 1. Cooperative action mode among secondary metabolites, primary metabolites, and minerals

Component involved Compound groups and bioactivity Putative 
mechanism

Bioassay 
type References

Secondary 
metabolites

Berberine and piperine: antibacterial Synergist In vitro (28)

Artemisinin and flavonoids: antimalaria Synergist In vitro (29)

Saponins and flavonoids: myocardial ischemia Synergist In vivo (75)

Prenylated xanthonoids (acetylshikonin, deoxyshikonin, β, 
β-dimethylacrylshikonin, β-hydroxyisovalerylshikonin, and trans-anethole): 
cell regenerating stimulation for wound healing

Additive In vitro (76)

Berberine, hypaconitine and skimmianine: ulcerative colitis Complementary In vivo (77)

Tanshinone IIA terpenoid, salvianolic acid B and ginsenoside Rb1 saponin: 
myocardial ischemia Synergist In vivo (78)

Anthocyanidin and rosmarinic acid: anti colitis Synergist In vivo (79)

Secondary metabolite 
with primary 
metabolite

Ginsenoside Rb1 and polysaccharides; Diabetic model and antistress Synergist In vivo (80,81)

Lignan and polysaccharide; hepatoprotective Synergist In vivo (82)

Puerarin and polysaccharide: diabetes type II Synergist In vivo (83)

Polysaccharide with arabinogalactan type II side chains of Piper nigrum 
fruits and its synergistic effect with piperine; antitussive Synergist In vivo (84)

Flavonoids and polysaccharides; dementia Synergist In vivo (85)

Polysaccharides of Auricularia auricula and tremella and flavonoid; anti-
dyslipidemia Synergist In vivo (86)

Polyphenols and omega-3 fatty acid; antidepressant Synergist In vivo (87)

Procyanidin B3 and eicosapentaenoic acid
Polyunsaturated fatty acids; anti-inflammatory Synergist In vitro (88)

Among primary 
metabolites

Among polysaccharides; anti-inflammatory Synergist In vitro (89)

Among polysaccharides Synergist In vitro (90)

Glucagon peptide’ glucose lowering effect Synergist In vivo (91)

Sulfated polysaccharides: anti-measles virus Synergist In vitro (92)

Secondary metabolites with polysaccharide with fatty acids or peptide with 
fatty acids No report

Secondary metabolite 
mineral/metal ions

Flavonoids and trace element ion of B, Cu, Co Mn, Zn: general health 
promotion 

Possible 
complementary - (93)

more extended pharmacological mechanism theories 
may be proposed. There are four plausible mechanism 
concepts that could be approached. The first theory 
is based on the major compound effects present in 
herbal formulation. This concept follows conventional 
pharmacology, the pharmacological effects are produced 
by the binding of the major compound to a specific 
biomolecule such as an enzyme or receptor. The second 
idea is synergistic interactions. This is when one or more 
compounds, through specific actions, boost the activity of 
an active compound in an herbal preparation, as shown in 
many reports, including the most recent one by Vidar et 
al (28). The compound helpers have no effect or relatively 
do not have a significant effect on a specific target when 
each metabolite is examined separately. Meanwhile, when 
they are mixed in a dosage form, the active compound 
has a significant effect. The third form is additive 
interaction, as results of coworking of compounds which 
have similar working target, either enzymes, receptors, 

or other biomolecules. When each compound is tested 
at a certain dose individually against a specific target, the 
output becomes low because all targets are not occupied. 
However, it should be noted here that more detailed 
mechanisms, such as partial agonis, allosteric, and so on, 
are outside of this review’s coverage. On the other hand, 
when all compounds are formulated in a dosage form, it 
will result in a maximum effect, which might be due to a 
mode of action combination such as agonist and allosteric 
or due to total occupancy of the target. 

Reintroducing complementary effect
The last plausible coworking form is the complementary 
effect, as mentioned by Zhang et al (77). This coworking 
action mode involves multiple compounds with multiple 
targets, all of which are directed to produce the same main 
outcome of a certain pathological class improvement. 
As with the active drugs in hypertension therapy, there 
are different drug classes, e.g., angiotensin converting 
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enzyme (ACE) inhibitor, angiotensin receptor inhibitor, 
diuretic, and so on (77,94-96). Those agents have different 
specific targets, but all those sub-mechanisms are directed 
to lower blood pressure. Furthermore, because this 
complementary mode of action consists of proposed 
complex biological pathways, it has become the current 
pharmacology network paradigm (97,98). Nevertheless, 
those interactions must consider the concentration and 
ratio of the involving compounds. 

Drawback of current metabolomic techniques
Over the last decade metabolomic techniques have 
emerged in response to the demand for a pattern-oriented 
approach that bridges the gap between holistic and 
comprehensive perspectives (99). However, a significant 
portion of reports has focused on small molecule groups 
and short-chain primary metabolites such as short sugars, 
amino acids, and short fatty acids (100,101), whilst their 
output data often exhibit limited direct correlations with 
bioactivity data. On the other hand, macromolecules 
(polysaccharides, peptides, and fatty acids), conjugates, 
and minerals in the herbal preparations might have 
bioactivity contributions that mainstream analytical 
methods have overlooked (102-105). Considering the 
secondary metabolite platform, therefore, a point to argue 
here is that there is some missing information from whole 
connectivity between the total metabolites and biological 
activities (106,107). Despite still being at the level of 
preclinical studies, the number of synergistic interaction 
reports between primary metabolite and other chemical 
constituent groups are relatively supportive of their 
existence (108). 

Contribution of non-secondary metabolites
Shi et al (86) reported that polysaccharides of edible fungal 
Auricularia and Tremellan and flavonoid of Crataegus sp. 
demonstrated a synergistic effect as anti-dyslipidemia in 
vivo. Yan et al (82) reported that the combination of lignan 
from Schisandrae chinensis fruits and polysaccharide 
from Astragalus sp. showed a synergistic interaction as a 
hepatoprotective effect on a rat model. The combination 
of polysaccharide with arabinogalactan type II side chains 
and piperine was reported to have a synergistic effect as 
a cough suppressor (84). In vivo tests of the combination 
of puerarin and polysaccharide from Pumpkin (109) and 
polysaccharides and ginsenoside Rb1 from Panax ginseng 
(80) exhibited some synergistic effects as antidiabetic type 
2. Fang et al (85) reported that ginkgo flavonoids and 
Coriolus versicolor polysaccharides showed synergistic 
effects as antidementia agents in a rat model. The coworking 
effect between secondary metabolites and fatty acids was 
demonstrated by the combinations of polyphenols and 
omega-3 fatty acids as synergistic antidepressants (87) 
and procyanidin B3 and eicosapentaenoic acid as anti-
inflammatory agents (88). Meanwhile, the cooperative 

action mode between polysaccharides and peptides was 
reported on glucagon peptide as glucose lowering effect 
of Ilex paraguariensis (91) and conjugated polysaccharides 
with polypeptide, hypoglycemic, hypolipidemic-
antiatherogenic, anticoagulant, and antithrombogenic 
agents (110). The report of possible cooperative action 
mode between secondary metabolite and minerals has 
been revealed on flavonoids and trace element ion of Cu, 
Co, Mn, or Zn in the composition of tea infusion (93). 
However, the current reports on potential coworking 
action modes predominantly are still at in vivo level. It is 
understandable since the “wet laboratory work” of natural 
product studies is mainly directed toward bioassay guided 
isolation for lead compounds. As a consequence, research 
reports on the macromolecules and mineral activity and 
their interaction toward secondary metabolites as well 
as their specific mechanism in herbal pharmacology 
are found quite rare. Nevertheless, from those ample 
of reported data, the contributions of polysaccharides, 
peptides, fatty acids or their conjugates, and minerals 
toward functional bioactivities to the crude drugs, in 
particular in aqueous and polar extracts, cannot be 
ignored. Therefore, once a defined pharmacology class 
of crude drugs has been established, the standardization 
requirements must be comprehensively fulfilled for 
all chemical groups. It is likely an unfair scenario if the 
standardization of herbal preparations sticks to relying 
on one type of secondary metabolite group or certain 
chemical markers as the specific standardization purpose. 
To address the gap, a comprehensive physical-chemical 
standardization, including the efforts to accommodate 
the classical quantification of polysaccharides, peptides, 
and mineral are indispensable with the initial guide of the 
biological activities (Figure 1).

Pondering classic herbal standardizations 
Based upon the simplified pharmacological approaches, 
it implies that the current extract standardization might 
not adequately represent all contributing chemical 
constituents, particularly in terms of the terminology 
of specific parameters (111,112). Therefore, a more far-
reaching paradigm should be considered. Once biologically 
active samples have been confirmed, the appropriate 
chemico-physical profiling methods of all metabolite 
types and all possible contributing minerals should also 
be conducted. For conventional extract batch uniformity 
tests, some investigators use certain chemical markers 
from secondary metabolite groups, which are called as 
active markers with HPTLC or HPLC quantification 
methods (113-115). Nevertheless, the efficacy of active 
markers is insufficient to show how all chemicals in 
certain plant species or even multiple components work 
together. This concept is only relevant to the active major 
compounds that have been identified so far. For this 
reason, the active markers very often fall into the category 
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of analytical markers without any correlation to quality, 
in particular efficacy (116). It is then clear that pattern-
oriented approaches are more appropriate methodologies 
for possible synergistic, additive, and complementary 
interactions of compounds in herbal preparations. Current 
hyphenated instruments, in particular LC-MS and LC-
NMR, in combination with chemometric platforms 
become choices as possibilities to provide “holistic or 
comprehensive views” in some senses (117,118). However, 
rather than a single system for all molecule groups, 
LC-MS instrumentations employ different solvents, 
stationary phases, and detection systems dependent 
upon the metabolite group in terms of molecular weight 
to accommodate a wide range of metabolites, including 
carbohydrates, peptides, fatty acids, and their conjugates. 
Therefore, for one sample, one might use several LC-
MS types (79,119). Even though NMR spectrometry can 
cover all molecule groups with one spectrum, it is hard 
to imagine how many metabolite signals will overlap 
(120,121), and the sensitivity parameter and solvent choice 
solubility strength (122) become problems in the NMR 
method. Nonetheless, regarding the cost, in particular, 
LC-MS and NMR-based methods become issues for 
third-world countries. Considering these reasons, the 
scarcity, the high cost of the reference substances, and 
advanced instrumentation availability have been the 
three major bottlenecks in the implementation of multi-
component routine quality control and pattern-oriented 

approach of herbal standardization. Thus, the extended 
standardization methods which align effectively with 
traditional practices, like the solubility of the total extract 
and ash in water, semi-polar solvents, and nonpolar 
solvents (Figure 1), could be reintroduced as the element 
of complete standardization approaches. 

The traditional standardization methods based on 
colorimetry or gravimetry methods of total quantification 
of each metabolite group, such as flavonoid, polyphenol, 
alkaloid, tannin, coumarin, glucosinolate, protein, 
carbohydrate, fatty acid, and peptide groups, therefore, 
are still useful to fix the lack of thoroughness. Until 
recently, the vast majority of metal analysis in herbal 
medicines has been directed towards investigating their 
toxicity rather than recognizing their potential beneficial 
and fundamental contribution to human health. Further, 
assessing the total quantity of a specific mineral in 
an extract based on inductively coupled plasma-mass 
spectrometry (ICP-MS) could be applied since the 
interaction among any type of chemical constituent could 
be considered (123,124). ICP-MS is the current method 
of choice to quantify certain minerals or targeted mineral 
groups in very specific and sensitive quantification 
with a lower detection limit down to part per trillion 
(ppt) with efficient performance. Meanwhile, relatively 
uncovered matters by advanced analytical instruments 
in extract can be quantified by gravimetry methods with 
solubility division successively in water and ethanol prior 

Figure 1. Flow chart of combination chemical finger printing and classical quantification of all chemical constituent groups.
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to the constant weight quantification. Ash characters 
representing whole acidic and basic minerals are dissolved 
in corresponding solvents before determining each 
constant weight according to USP (125). The chart of 
chemical group analysis and classical quantification of all 
chemical constituent groups is summarized in Table 2.

Periodic standardization and metabolite evolution
In addition to good agricultural practice implementations, 
considering the variability of regional resources and 
evolution’s impact, official standards such as herbal 
pharmacopeia and monograph should be routinely 
evaluated every five to eight years. Several factors 
may trigger the secondary metabolite change due to 
hybridization (147), variability of herbivore-plant 
interaction (148) and insect resistance, and other 
environmental changes such as drought stress, salinity, 
higher-lower temperature, and soil microbial composition 
(149,150). These conditions will impact chemo-diversity 
on both metabolite composition and accumulation 
(151,152).

Conclusion 
The bioassay guided fractionation program was only 
able to result in 0.01% clinically used drugs; besides, the 
purified matters have exhibited lower efficacy than that 
of the parent extracts. Thus, leveraging crude extracts 
will be more beneficial as the main raw material for 
health supporting products. Since the evidence based on 
herbal medicine is relatively lacking in data, a plethora of 
herbal medicine studies have been focused on secondary 

metabolites or macromolecules, which might not be so 
relevant to the traditional context, which is apparently 
based on complex constituents. As a consequence, once 
the bioactivity of an herbal extract is defined, conducting 
all aspects of chemical constituent groups is mandatory. 
Too much focus on the secondary metabolite group 
is apparently irrelevant to the basic pharmacological 
mechanism approach, which could result from multi-
component interactions in the numerous biomolecular 
targets. Therefore, the quantification of primary 
metabolite groups such as polysaccharides, peptides, and 
fatty acids, as well as mineral content, will complete the 
data. Traditional methods such as gravimetry for constant 
weight determination and solubility in acidic or basic 
solvents of extract and ash are relevant to justify the basic 
character of material bulk and these methods have been 
unchangeable until now. Since ecological and climate 
changes could interfere with the chemical constituent 
in plant source, the periodic standardization may be 
conducted to provide official up dating on the official 
guides.
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